
white paper

Testable Integration Architecture:
The Power of Abstraction

Cognizant White Paper

Executive Summary

In this paper, we describe Testable Integration
Architecture (TiA), a unique capability supported
by an open source toolset and an accompanying
methodology. Specifically, TiA can be applied to
the critical area of communication models for
software systems -- we might call this the
integration architecture -- and it enables decision
makers to address issues before they become
defects. TiA empowers one to think in global
terms, focusing on system behavior by taking a
systemic view. TiA can provide insights into the
consistency of requirements, as well as the
surety of process designs and their attendant
integration concerns, through the testing of
models against requirements. The benefits to
customers include early defect detection and
consistency of requirements, achieved through
model testing. This results in higher alignment,
lower costs, faster delivery, higher quality and a
clearer return on investment.

The traditional methods of addressing quality
and decreasing time to market require higher
levels of investment in governance and skills. TiA
does not require any additional investment, and
this is what makes it fundamentally different
because it reduces overall costs, while also
reducing time to market and increasing quality.

In a service-oriented architecture (SOA) context,
TiA is a concrete means of ensuring that

services meet their business requirements, a
key principle mandated by the “SOA Manifesto.”
SOAs are defined by the presence of service
contracts, which describe what a service
provides in terms of functions, inputs and
outputs. The role of TiA is in the composition of
service contracts as a set of peered services
that compose a solution. In this regard, the TiA
description provides an integration model that
maps out the communication pertaining to
service contracts that can be tested against
business requirements. By doing so, it ensures
the best use of existing service contracts and
the best design for new service contracts that
make up a solution.

Overview

“The best SOA innovation I have ever seen.”
— Chief architect, global insurance company

Testable Integration Architecture combines the
power of abstraction and formal methods to
allow integration architectures to be better
described. It enables them to be formally and
rigorously tested to ensure that they meet
business requirements.

TiA describes the fundamental interactions and
ordering rules that need to occur between a set
of application(s) or services to deliver a solution.

white paper 2

Monitor—Runtime enforcement

Test—J2EE, .NET
against model

Implement—J2EE, .NET

Guide Implementation—
UML, WSDL, BPEL, HTML

Verify Model Sign-off on
Description—BPMN, HTML

Model System
Architecture of Services

Gather Requirements—Sequence
diagrams and messages

Removing Ambiguity
Driving up quality
Driving down costs
Increasing agility in a controlled way

The TiA Methodology

Using TiA can reduce the risk of delivering
solutions that don’t match requirements,
inadequate testing, high cost of delivery and
ongoing maintenance in the face of change. A
Testable Integration Architecture can also
increase the quality and flexibility of a solution.

These benefits are achieved through a formal
alignment of the integration architecture with
the requirements, through testing, which
reduces the risk of design time errors.

Furthermore, an alignment of the solution with
the integration architecture results in runtime
alignment, which enables stronger management
of change over time.

While the tool suite is open source, the
methodology for Testable Integration
Architecture was developed by us over the last
two years. The leadership that we continue to
provide in framing the development of the tools
and refinements to the methodology is a
testament to the visionary approach we have
applied to the field of enterprise architecture as
a whole.

About Testable Integration Architecture

Testable Integration Architecture is supported
by an open source tool suite -- the collaboration
tool suite from Redhat (www.jboss.org/savara)
-- and the methodology we developed.

Here are the questions that Testable Integration
Architecture addresses:

n Are our requirements consistent and imple-
mentable?

n Will my SOA platform support my target solu-
tion, and if not, why not?

n How many requirements does my integration
architecture meet?

n What improvements can I make to my integra-
tion architecture to support my business?

Here are the benefits of using Testable
Integration Architecture:

n Reduced cycle time for a solution.

> By leveraging the power of abstraction in
both requirements gathering and creating
solutions with TiA.

n Provable solution against requirements.

> Through formal testing of the integration
architecture against requirements.

n Reduced implementation time.

> Through the generation of technical con-
tracts from the integration architecture
that drive implementation.

n Reduced testing time.

> Through the guarantee that technical con-
tracts are complementary against the inte-
gration architecture.

Figure 1

white paper3

> Through the testing of components
against the integration architecture.

n Continual real-time governance with change
management.

> Through the monitoring of implemented
solutions against the integration architec-
ture over change.

n Reduction of risks associated with delivery.

> Through the generation of technical con-
tracts tested against requirements.

Engagement Model

We provide a range of engagements for clients
of Testable Integration Architecture, including:

n Introductory workshops that last two to four
hours.

n Targeted workshops that incorporate cus-
tomer problems and span two half days.

n Sub-line-of-business solutioning that typically
runs six to 10 weeks.

n Line-of-business solutioning that typically
runs 12 to 20 weeks

n Cross-line-of-business solutioning that typi-
cally lasts more than one year.

The aim of our engagement pyramid is to
ensure that customers understand the tools,
methodology and benefits of our approach and
gain a better appreciation of our global delivery
model in bite-sized chunks.

The Methodology

Our methodology, along with the open source
tools that form Testable Integration
Architecture, provide successive refinements of
both requirements and integration architecture
models of solutions. This turns the process of
requirements gathering to artifacts that drive
delivery and implementation into a repeatable
and manageable process.

The successive refinement mechanism is
applied to requirements and integration
architecture models of those requirements. The
requirements gathered at each level are used to
drive the development of an integration
architecture model that expresses the solution
at the requirements level. The integration
architecture model is testable and/or verifiable
against those requirements. At the higher
levels, the verification is syntactic simply

because there are not enough semantics. But as
the levels go deeper, verification becomes
semantic and is based on formal testing of
those semantics as they are expressed in the
requirements and manifested in the integration
architecture model.

Formal testing of an integration architecture
model against requirements is achieved by the
simulation of the requirements against the
integration architecture model. When
deviations occur between the integration
architecture model and requirements, they are
highlighted in the requirement. The marking of
deviations more easily facilitates discussion of
the requirements with business analysts and
subject matter experts and more easily
facilitates design errors for the solutions
architect. In some cases, the error is clearly a
design error, and the solution architect can fix
the integration architecture model and re-test.
In others, it may be a misunderstanding of a
requirement that gives rise to the deviation or,
indeed, that the requirement is circumspect and
the solution architect is able to rapidly engage
with business analysts and subject matter
experts to ensure corrective action is taken and
then re-tested.

The levels of refinement are numbered 0 to 5.
Here is a description of each level.

n Level 0 is the “business” level and frames a
business context.

n Level 1 is the “lifecycle” level and frames the
order in which high-level, granular business
processes or activities should occur.

n Level 2 is the “landscape” level, which
extends Level 1 by adding finer grained details
to the business processes and activities in
terms of the existing applications that play a
role in a specific business process or activity.
At this level, we add the idea of message flow,
a key component of integration architectures,
as opposed to focusing exclusively on busi-
ness process and activity ordering. We call
this level an “abstract” model of the solution
because it has everything except the bindings
to target platforms and the bindings to the
underlying information model that drives the
message flows.

n Level 3 is the “technical” level. It extends
Level 2 by adding the bindings to the underly-
ing target platform in the form of the technol-
ogy standards to which they must adhere (e.g.,

WSDL1.1, WSDL2.0, BPEL1.0, BPEL2.0, etc.), as
well as the underlying information model (e.g.,
XMLSchema, CVS, etc.) to which the messages
that are exchanged in the flow must conform,
in terms of the formats and -- very important-
ly -- the business transaction identities or cor-
relation sets of identities over the flow. We call
this a “concrete” model because it is grounded
upon a platform and an information model. It
is at this level that we are able to simulate
requirements, in the form of sequence dia-
grams with example messages, over the inte-
gration architecture model to show that the
integration architecture model does or does
not support the requirements. This is what we
mean by Testable Integration Architecture, in
as much as the integration architecture model
can be formally shown to fully support the
requirements.

For the purpose of simplicity, we use the term
“model” rather than “integration architecture
model” to make it easier to read and understand
the refinement process.

Defining the “Business” Level

At the highest levels, which we call the
“business levels,” requirements are a set of
statements. That set is known as “R0.” A model
of the R0 requirements is known as “L0.” The
intention here is simply to capture the R0
requirements in some diagrammatic and

annotated form. Generally, R0 requirements
derive from high-level statements that are
created by an executive or management board.
An L0 model provides some pictorial
representation of what might need to change.
This would indicate the project scope, which
drives budgetary and resource decision making.

A typical set of R0 requirements is illustrated
below (see Figure 2), along with the L0 model
that embodies them. L0 models are a
convenience rather than a necessity for
delivering a solution, and with no formal
semantics behind them, they play no role other
than indicating the scope of change.

R1 and L1: The “Lifecycle” Level

The first refinement step that we make is to
gather what we call “lifecycle” requirements,
known as “R1” requirements. The R1
requirements must be grounded upon the R0
requirements. In the example above,
requirements pertaining to new policies would
be outside the allowable refinement from R0 to
R1, whereas refinements based on claims would
be allowable. “Lifecycle” requirements are
statements that define an ordering of key steps
or business processes needed to deliver the R0
requirements. An L1 model, which is the
refinement of L0 and is based on the R1
requirements, embodies the R1 requirements.

white paper 4

R0 (Business) Requirements:

R0_1.Implementation of a
cross-functional eClaims
process.

R0_2.Key information entities
include: Beneficiary, Claim,
Claimant, Policy, Survey Report.

R0_3.Key constraints include:
portal access is requied for:Loss
Adjsutor, Claimant, Claims
Manager.

Risk Person

Claim LossAdj

Policy ClaimsMgr

Beneficiary

Insured

Customer

M
ot

or

H
ou

se

Tr
av

el

Li
fe

Pe
rs

on
al

Claims Processing

Level 0 To-Be As-Is

Typical L0 Model Used for Budget Scoping

Figure 2

white paper

The R1 requirements and L1 model must be
verifiably aligned; that is, the L1 model must
express all lifecycle ordering constraints
expressed in the R1 requirements. Although not
formally testable at this stage, the review of R1
requirements against an L1 model must be able
to show alignment by inspection.

An example of R1 requirements and the L1
model are shown above (see Figure 3). The L1
model has clear semantics in terms of ordering
and successive refinements of both
requirements. Both models will preserve the
semantics expressed at the higher levels as we
descend through the lower levels.

Now that we have a more formal model for our
L1, we can start to do things with it. In our
Testable Integration Architecture approach, we
can generate reviewable artifacts from the L1
model and review against them. We are
guaranteed that anything we generate is
functionally equivalent to the L1 model, and so
we might think of any generated artifacts as
being a subset or subtype of our L1 model. We
show a simple HTML example of the L1 model
that was generated from that model below (see
Figure 4):

5

R1 (Lifecycle) Requirements:

R1_1:A claim must have been made before any
further processing of a claim can proceed.

R1_2.Once a claim has been made and validat-
ed (see FirstNotificationOfLossFree.scn), the
claim may be subject to any number of status
enquiries by any authorized entity (Loss
Adjuster, Claimant, Claims Manager).

R1_3.Once a claim has been made and validat-
ed (see FirstNotificationOfLossFree.scn) the
claim may be processed by an authorized enti-
ty (Loss Adjuster, Claimant, Claims Manager)
where processing advances the status of the
claim.

R1_4.Status enquiries and claims processing
may happen concurrently.

R1_5.A claim is deemed to have terminated
once it has reached a conclusion.

R1_6.A conclusion may result in a payment to
one or more parties.

eClaims Process

/eClaims Process

FirstNotificationOfLoss.scn

/FirstNotificationOfLoss.scn

At the same time

Process Claim

Claims Processing

/Claims Processing

Permit zero or more
status enquiries

/Permit zero or more
status enquiries

While status is not completed

/While status is not completed

Status Enquiry

/Status Enquiry

L1 Lifecycle Model Depicting the Lifecycle of a Claim

Figure 3

Figure 4

/Process Claim

/At the same time

/Claims Settlement

Claims Settlement

Collaboration: eClaims Process

Choreography flow for the eClaims process

This collaboration is the “roof”
collaboration, which means that it is the
first one that is activated when monitoring
or executing the business protocol defined
within the collection of collaboration
modules in the CDL package.

Activities

n Perform the first notification of loss
collaboration by claimant.

n At the same time:

>Process claim

B Perform the claim processing
collaboration

>Permit zero or more status enquiries

BAllow a status enquiry (condition
is non-observable based on some
status in the workflow for the claim)

BPerform the status enquiry
collaboration

n Perform the claim settlement
collaboration

R2 and L2: The “Landscape” Level

The process of refinement continues to what we
call R2 requirements and L2 models. The R2
requirements are known as “landscape”
requirements. They typically constrain the
solution of an existing landscape in which some
components of the solution are already available.
The existing components may be applications
with APIs or services with WSDL descriptions. In
the former, the aim of the solution is to service-
enable the existing application, and in the latter,
to re-use the service as-is.

In the R1 requirements, we had no notion of
components, services, roles or actors. We simply
stated what the key steps should be and provided
some constraints on the ordering of those steps.
In the R2 “landscape” requirements, we are more
precise. In the case of First Notification of Loss,
we give examples of which applications/services
should be used and what the flow of information
should be between them. We do this by drawing
sequence diagrams (sometimes known as
message sequence charts), which describe the
order in which applications/services exchange
data to implement a process such as First
Notification of Loss.

Typically, this level of requirement is initially
framed by a list of relevant applications and
services that must be reused, as seen below:

R2 (Landscape) Requirements:
R2_1:Legacy Policy System, Workflow System,
Accounting System and Claims System.

The sequence diagrams that we require are not
just pictures of swim lanes and message links
between them. Example messages are also
needed as an additional item per message link.
Thus, each link has an example message. At this
stage, the content of the messages is not
important – they could be blank – but they will
become important as we further refine towards
a solution.

Typically, the set of sequence diagrams is not
enough to be sure of a design; rather, they are
indicative. For example, the key flows may be
described, leaving many erroneous (unhappy)
paths unstated, and yet the solution and the L2
model must ensure that these are also covered.
Two example sequence diagrams are shown
below (see Figures 5 and 6), which show a happy
and unhappy path.

The process by which the L2 model is created
from the R2 requirements has a strong degree

white paper 6

Register Loss (Loss Details Message Type)

Lookup Policy (Policy Details Request Message Type)

Lookup Policy Details (Policy Details Request Message Type)

Claimant
[]

Claims System
[]

Policy System
[]

Workflow System
[]

A Normalized View of R2 Functional Requirements for Claims Processing

Figure 5

Register Loss (Claim Details Message Type)

Schedule Claim Processing (Claim Details Message Type)

white paper

of collaboration between the subject matter
experts, the business analysts and the
architects. The process actively encourages
collaboration to ensure that those things that
are unstated are teased out and correctly
modeled. In this way, the dialogue between the
different parties to a solution is correctly
framed and focused. This, in turn, leads to
better alignment and removes ambiguity.

The starting point for the L2 model is -- for
every swim lane across all sequence diagrams
-- the necessary roles that are needed. In
addition, for each pair of swim lanes, the
starting point is also an exchange to show a
relationship. This is done graphically and results
in a static picture of the key components that
are necessary to support the landscape as it has
been defined, as well as additional
requirements. In the insurance industry
example (see Figures 7 and 8), these are portal
access for the claimant, the claims manager, the
loss adjuster and so on.

The static model embellishes the L1 model of
processes and their ordering rules. Further
embellishment is made to add the detailed flows
as described by the sequence diagrams on page 8.

R3 and L3: The “Technical” Level

The refinement continues to R3, or the
“technical” requirements, in which technical
considerations are added to the requirements,
such as business transaction identities over the
set of applications/services and the target
platform semantics (e.g., event driven or
request response, WSDL, Java, BPEL, etc.).

The embodiment of the R3 requirements is the
L3 model, which appears remarkably similar to
the L2 model. The key differences are that the
properties on the model may be directed to the
target platform semantics, and the model is
bound to a concrete information model.

In the first instance, the target platform
semantics and errors in design relative to the
target platform are found through model-
checking against those semantics. A classic
case is modeling intervening activities between
a request and a response and wanting to use
BPEL orchestration as a target platform. The
two cannot be done because BPEL does not
allow it. Another might be to use WSDL1.1, but
the solution requires notification, which is not
supported in WSDL1.1.

7

Register Loss (Loss Details Message Type)

Lookup Policy (Policy Details Request Message Type)

Lookup Policy Details (Policy Not Found Message Type) fault Policy Not Found

Claimant
[]

Claims System
[]

Policy System
[]

A Normalized View of R2 Functional Requirements for Claims Submission

Figure 6

Register Loss (Invalid Policy Message Type) fault Invalid Policy

white paper 8

Claimant To Claims System Rei

Claims System to Workflow System Rei

Claims System to Policy System Rei

Claimant Portal

Claimant Portal Beh

Claims System

Claims System
Behavior

Loss Adjuster Portal

Loss Adjuster Portal
To Claims System Rei

Loss Adjuster
Portal Behavior

Claims Manager Portal

Claimant Portal Por

Accounting System

Accounting System
Behavior

Workflow System

Workflow System
Behavior

Policy System

Policy System
Behavior

Claim Manager Portal
To Claimant Portal Rei

Claim Manager Portal To Claimant System Rei

Claims System To Accounting System Rei

Claim Manager Portal to
Loss Adjuster Portal Rei Workflow System To Claim

Manager Portal Rei

Workflow System To
Loss Adjuster Rei

A Bubble and Stick Model of Who Talks to Whom

Figure 7

Claimant 2 Claims

Claims 2 Policy

/Claims 2 Policy

Policy 2 Claims

/Policy 2 Claims

Schedule

At the same time, inform the claimant that the loss
has been registered and schedule the processing of

the claim with the workflow system

Choice between a policy that was found and is valid and
none being found in which case it is valid

/Claimant 2 Claims

The policy was found for the claimant

A Partial TiA Description of the Claims Submission Process

Figure 8

white paper

In the second instance, the binding to an
information model -- which must be done -- is
achieved by explicitly stating for every message
type what the underlying business transaction
identities should be. This latter stage, the
binding of identities, is more profound than at
first it might seem. For example, in a claims
process transaction, the first notification of a
claim by the claimant to the claims system has
some nominal identity based on the claimant’s
policy (e.g., PolicyId). The policy details provided
are used to verify that the claimant can claim
against a valid policy. If the policy is valid, the
identity from that point on is tracked by a claim
reference (e.g., ClaimId), and the claimant is
asked for this detail in every subsequent
communication with the claims process as a
whole. So, what we see are changing identities
over time and based on context.

Many systems that get this wrong suffer from
problems when they are subject to integration
testing. Sadly, the cost of remediation at that
juncture can be high. By testing at this point, we
ensure that the design that is embodied by the

L3 model is correct and that the requirements
in terms of message order and correlation
identity sets are also correct.

Above is an example binding of a specific
message type (see Figure 9). In this example, the
Xpath expression simply states that the identity
for messages of this type are to be found at the
attribute known as ClaimId in the message.

Reviewing Solutions

At this point, we have a tested model, L3, which
is available for review. Rather than reviewing
the diagrammatic notation, which to the
uninitiated may be intimidating, we enable the
models at the various levels to be used as input
to the generation of various forms of HTML
textual documentation that describes the
processes and flows and their ordering rules.
This is done in ways that are more
understandable for business-focused and
technology-focused stakeholders. An example
(see Figure 9, above) illustrates the extracts of
the L3 business views.

9

Collaboration: eClaimsProcess.First NotificationOfLoss
Collaboration for the first indication of a loss by the claimant

Activities

n Notification Of Loss Sequence

>Register the loss with the claims system

>Claims system validates the policy details for the claimant based on the loss details
by checking in the policy system

>Choice between a policy that was found and is valid and none being found in which
case it is invalid

n The policy was found for the claimant

n The policy system returns a matching policy to the claims system

n At the same time, inform the claimant that the loss has been registered and
schedule the processing of the claim with the workflow system

n Schedule

n The claims system schedules the claim with workflow system

n Inform

n The claims system informs the claimant that the loss has been registerd and
issues a suitable claim reference for the claims and matching policy

n The policy was not found for the claimant

n The policy system returns POLICYNOTFOUND to the claims system, indicating an
invalid policy from the claimant

n The claims system informs the claimant that the policy details are INVALID

Figure 9

Equally, other formats can be generated. Here
we show a BPMN fragment for the same process
(see Figure 10).

Technical Contracts to Drive
Implementation

Once the L3 model has been tested and
reviewed, we can generate the technical
contracts from the L3 model, safe in the
knowledge that the artifacts accurately reflect
the model and have the same validity -- based
on formal testing and review -- as the model
from which they are generated.

The aim of the technical contracts is to hold
invariant the collaborative behavior of the
different components that delivery teams will
implement. These contracts do not define the
internal business logic that they need to design
and/or write; rather, they ensure that the external
interfaces to other components, embodied by the
integration architecture, are held invariant, which
increases the chances of successful integration of
the components and reduces failure of
interoperability and collaborative errors. As a
result, the number of passes through systems
integration testing declines.

white paper 10

Send
Claimant2Claims
Request Change

Receive
Claimant2Claims

Respond Exchange

Receive
Claimant2Claims

Request Exchange

Send
Claimant2Policy

Request Exchange

Receive
Claims2Policy

Request Exchange

Receive
Claims2Workflow

Request Exchange

Send Claimant2Workflow
Request ExchangeReceive

Policy2Claims
Respond Exchange

Send Policy2Claims
Respond Exchange

Send Policy2Claims
Respond Exchange

Receive Policy2Claims
Respond Exchange

Send Claims2Claimant
Respond Exchange

Send
Claims2Claimant

Respond Exchange

Receive
Claimant2Claims

Respond Exchange

Register Loss (Claim Details Message Type)
Register Loss (Loss Details Message Type)

Register Loss (Policy Details Response Message Type)

Lookup Policy (Policy Details Request Message Type)

Lookup Policy (Policy Details Request Message Type)

Lookup Policy (Policy Details Response Message Type)

Schedule Claim (Claim Details Message Type)

Cl
ai

m
an

t P
or

ta
l P

ar
tic

ip
an

t
Cl

ai
m

 S
ys

te
m

 P
ar

tic
ip

an
t

Po
lic

y
Sy

st
em

 P
ar

tic
ip

an
t

W
or

kf
lo

w
Sy

st
em

 P
ar

tic
ip

an
t

A Generated BPMN View of the Claims Submission Process

Figure 10

white paper11

Register Loss (Loss Details Message Type)1

Lookup Policy (Policy Details Request Message Type)2

Lookup Policy Details (Policy Details Response Message Type)3

Claimant
[Claimaint Portal Participant]

Claims System
[Claims System Participant]

Workflow System
[Workflow System Participant]

Policy System
[Policy System Participant]

A Normalized View of R3 Functional Requirements
for Claims Submission (generated)

Figure 11

Register Loss (Claim Details Message Type)4

Schedule Claim (Claim Details Message Type)5

Ref Identity Tokens Identity Values Query Expressions Message File
[1] PolicyRefToken RSA-Motor-ABC123 //rsa:PolicyRef/text() LossDescriptionMessage.xml
[2] PolicyRefToken RSA-Motor-ABC123 //rsa:PolicyRef/text() PolicyDetailsDescriptionMessage.xml
[3] PolicyRefToken RSA-Motor-ABC123 //rsa:PolicyRef/text() PolicyDetailsMessage.xml

RSA-Motor-ABC123 //rsa:PolicyRef/text()
[4] PolicyRefToken ClaimRefToken RSA-Motor-Claim-3 //rsa:ClaimRef/text() LossAcknowledgementMessage.xml

RSA-Motor-ABC123 //rsa:PolicyRef/text()
[5] PolicyRefToken ClaimRefToken RSA-Motor-Claim-3 //rsa:ClaimRef/text() ScheduleClaimMessage.xml

Sent_Workflow2ClaimsSystemRequestExchange

Received_LossAdjsuter2WorklfowRespondExchange Received_ClaimSystem2WorklfowRequestExchange Received_ClaimSystem2WorklfowRequestExchange

Received_ClaimManager2WorklfowRequestExchange

Sent_Worklfow2LossAdjusterRequestExchange Received_Worklfow2ClaimManagerRequestExchange

Sent_Worklfow2ClaimManagerRespondExchange

Sent_Worklfow2ClaimManagerRequestExchange

Sent_Worklfow2ClaimManagerPortalRequestExchange

[<non-observable>]
[false]

[false] [false]

A UML State Chart for the Workflow System’s Behavior (generated)

Figure 12

[<non-observable>]

Examples of WSDL and UML State Charts, as
well as grounded sequence diagrams, are shown
in Figures 11, 12 and 13. All are generated from
either the model or the business requirements.

Conclusion

This paper demonstrates, in a scientific and
concrete manner, the application of TiA in
managing the problem of system integration
into distinct levels of abstraction. The power of
abstraction is not a trivial task to instigate. On
the one hand, it fundamentally governs the
need for correctly representing the
requirements of applications. On the other, it
requires the foresight to design flexible

structures in areas where requirements might
change in the near future. TiA provides a global
view of the system dynamics, offering the
foresight needed to design solutions that will
evolve as the landscape changes.

As a case study, we demonstrated how TiA has
been employed in �the insurance domain,
focusing on the problem of claims, to moving
from several distinct models of claims to an
enterprise model, which overarches several
lines of business. TiA provided a global view -- a
systemic view -- of the problem across several
lines of business, abridging the complex task of
abstraction.

white paper 12

<?xml version=“1.0” encoding=”UTF-8”?
<definitons xmlns=“http:schemas.xmlsoap.org/wsdl/”

smlns:soap=“http://schemas.xmlsoap.org/wsdl/soap/” xmlns:tns-
“http://www.cognizant.com”
<message name=””>
<documentation>

pi4soa: user defined definitions
<documentation>

</message>
<portType name=“WorkflowSystemBehaviotPort”>
<operation name=“NotifyReserve”>
<input message=“tns:null” name=“ClaimManager2WorkflowRequestExchange”/>
<output message=“tns:nell” name=“Workflow2ClaimManagerRespondExchange”/>

</operation>
<operation name=“UpdateClaimsStatus”>
<input message=“tns:null” name=“ClaimManager2WorkflowRequestExchange”/>

</operation>
<operation name=“NotifyUpdateReserve”>
<input message=“tns:null” name=“Claims2WorkflowRequestExchange”/>

</operation>
<operation name=“StatusRequest”>
<input message=“tns:null” name=“Claim2WorkflowRequestExchange”/>
<output message=“tns:null” name=“Workflow2ClaimManagerRespondExchange”/>
<fault message=“tns:null” name=“ClaimRefNotFound”/>

</operation>
</portType>

Figure 13

WSDL for the eClaims Workflow Participant

World Headquarters

500 Frank W. Burr Blvd.
Teaneck, NJ 07666 USA
Phone: +1 201 801 0233
Fax: +1 201 801 0243
Toll Free: +1 888 937 3277
Email: inquiry@cognizant.com

© Copyright 2010, Cognizant. All rights reserved. No part of this document may be reproduced, stored in a retrieval system, transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or oth-
erwise, without the express written permission from Cognizant. The information contained herein is subject to change without notice. All other trademarks mentioned herein are the property of their respective owners.

India Operations Headquarters

#5/535, Old Mahabalipuram Road
Okkiyam Pettai, Thoraipakkam
Chennai, 600 096 India
Phone: +91 (0) 44 4209 6000
Fax: +91 (0) 44 4209 6060
Email: inquiryindia@cognizant.com

European Headquarters

Haymarket House
28-29 Haymarket
London SW1Y 4SP UK
Phone: +44 (0) 20 7321 4888
Fax: +44 (0) 20 7321 4890
Email: infouk@cognizant.com

About Cognizant

Cognizant (NASDAQ: CTSH) is a leading provider of information technology, consulting and business
process outsourcing services. Cognizant’s single-minded passion is to dedicate our global technology
and innovation know-how, our industry expertise and worldwide resources to working together with
clients to make their businesses stronger. With over 50 global delivery centers and more than 85,500
employees as of March 31, 2010, we combine a unique global delivery model infused with a distinct
culture of customer satisfaction. A member of the NASDAQ-100 Index and S&P 500 Index, Cognizant is
a Forbes Global 2000 company and a member of the Fortune 1000 and is ranked among the top
information technology companies in BusinessWeek’s Hot Growth and Top 50 Performers listings.

Start Today

For more information on how to drive your business results with Cognizant, contact us at
inquiry@cognizant.com or visit our website at www.cognizant.com.

About the Authors

Steve Ross-Talbot is the European Technology Officer with the Global Technology Office for Cognizant.
He is also an author of the SOA Manifesto, a pioneer in distributed computing, the founding father of
WS-CDL and Testable Integration Architecture and an invited expert on many vertical standards, from
ISO to HL7. Steve can be reached at Steve.Ross-Talbot@cognizant.com.

Dr. Bippin Makoond is a Senior Solution Architect at Cognizant who functions as Global Innovation Lead
within the company’s Banking & Financial Services practice. He holds three patents within the domain
of wireless distributed systems and messaging technologies and is a visiting scholar and expert advisor
to the Component and Distributed System Research Group (CODIS) at Kingston University. Bippin can
be reached at Bippin.Makoond@cognizant.com.

mailto:Bippin.Makoond@cognizant.com
mailto:Steve.Ross-Talbot@cognizant.com
www.cognizant.com
mailto:inquiry@Cognizant.com

