
NoSQL Databases and Real Time
Analytics

Rebecca Simmonds

Introduction

l First year PhD student at Newcastle University

l Started identifying noSQL architectures

l Compiled information about them

l Moved onto real time analytics

l Now investigating the combination of them both

Overview

lBackground knowledge

lRelational databases

lNoSQL databases

lComparison

lReal world applications

lReal time analytics

Brewer’s Theorem

lConsistency: all client see the most recent data
simultaneously.

lAvailability: all requests receive a response, whether they
are successful or not.

lPartition Tolerance: the system continues to operate even
though there are message losses or part of the system
fails.

Theorem: You can have at most two of
these properties for any shared-data
system.

Relational Databases

l SQL querying language for analyzing the data

l Stores data in tables, rows and columns

l Displays the relations of the data

l Problems: horizontal scalability, partitioning, unstructured
data and availability

VoltDB

l Has the ability to scale to 120 partitions on 39 servers with
1.6 million complex transactions per second

l NewSQL

l ACID transactions

l No joins has to be done through stored procedures or at
the application level

l Rigid schema

Relational Cloud

l MIT based project

l CryptDB

l Scalable

l Transactional

l Workload aware partitioning

NoSQL

l New architecture for data storage

l Doesn’t use SQL

l “Not only SQL”

l A definition is not agreed upon but usually they consist of
a combination of the following functions. . .

NoSQL

lThe ability to horizontally scale

lThe ability to distribute (partition) data over many
servers

lA simple call level interface

lA weaker concurrency model than the ACID
transactions of most relational (SQL) database
systems

NoSQL Database Categories

lKey-value store

lDocument store

lColumn/Extensible store

lGraph store

Key Values Stores

l Stores the data value by key

l Simple

l Get, put and remove

l Schemaless

l Allows different data types for storage providing flexibility

DynamoDB

l Amazon’s original noSQL implementation

l AP system

l Allows for tunable consistency

l Effective for multiple scales, even 100’s of servers

l Really elastic and is used by Amazon’s EC2

Riak

l Key value store

l Elastic

l Horizontally scalable

l AP system with tunable consistency

l Good performance, with pluggable storage

l REST interface

Document Stores

l Stores documents

l A document holds a collection of fields

l Each document can hold a different amount of attributes

l Retrieved by using the key that each document is given

l Allows for more complex queries than key value stores

MongoDB

l Document store

l AP system

l Eventually consistent

l Automatic sharding

l Scalable

l Schemaless

CouchDB

l Document store

l Quick read and writes

l Eventually consistent

l But acid transactions are available at document level

l Provides tools to improve its use

Column or Extensible Stores

l Based on Google’s BigTable

l Column-oriented data storage instead of rows

l Key based searching

l Horizontally Scalable

l More flexible and dynamic than document stores

BigTable

l The first column store

l One big table made up of columns

l Partitioned into tablets

l Flexible schema

l Scales to 100s of servers

l Atomic operations at row level

Cassandra

l Column store

l Structure is a keyspace which holds column families

l Tunable consistency

l Automatically brings nodes into the cluster, so very elastic

l Scalable across 100s of nodes

Graph Stores

l Data is stored as a graph representation

l Uses graph nodes and relations

l Good for more complex relational information, e.g. friend
of a friend

l Best for analytical work loads that need traversal

Neo4j

l Schemaless so easily evolved

l ACID transactions

l Highly available and fault tolerant

l Scalable to billions of graph nodes

l Partitioning is manual and can be hard

Database
Consiste
ncy

Availablil
ity

Partition
Tolerance Schema

Scalabil
ity

VoltDB yes no yes yes

Near
linear
scalability

Relational
Cloud yes yes no no Scalable

DynamoDB no yes yes no Scalable

Riak no yes yes no Scalable

MongoDB no yes yes no Scalable

Neo4j yes yes no no Scalable

BigTable no yes yes no

Scalable
to 100s of
servers

Cassandra no yes yes no Scalable

Other categories

l Joins: whether it allows data to be joined from separate
partitions

l Open source: whether or not the source code can be
obtained freely.

l Partitioning type: provides how and if the database is
partitioned (sharded).

l Logging: includes whether the database includes
logging of the operations it completes.

Other Categories

l Locking: describes whether the database provides
locks.

l Storage: describes what storage it uses.

l Performance: How quickly the system performs reads
and writes

l Application and work loads: these are the
workloads and applications the database would be best
suited to

Real World Application

l VoltDb is used by companies such a Booyah games,
Eonblast and GetCo

l VoltDB was used because of its linear scaling, consistency
and performance

l Riak provides a new storage architecture for Mozilla labs

l Riak is used because of its security, availability and fault
tolerance

Real World Application

l MongoDB is used by a company called Pixable

l MongoDb is used because it is simple, has flexible sharding and its
replication options

l Cassandra has been implemented by Netflix and OOyala

l Cassandra is used because of its asynchronous replication, no down
time when the schema is changed, fast, scalable, more analytics,
cheap and can scale without decreasing the performance.

Real Time Analytics

The Next Step Data Collection. . .

l Using the architectures

l Traditional methods of data analysis

l Using streams to collect the data

l Data analysis in real time or across the database

Traditional Data Collection

l Data warehouses

l A database used to analyse the data

l Stores the data so there is an archive

l Data is then processed and can be reprocessed

l Data mining and analytical online processing

Stream Data Collection

l Continuous flow of data that is being produced in near real
time

l As the data arrives and a complex event processing
system can be used to process it

l Provides real time information

l Social networks, financial markets, health markets

Current Work with the Stream

l Introducing a real time aspect to the storage

l Decided to use Twitter

l Using a small percentage of Twitter’s firehose to collect
data

l Different tools for analysis

l Currently using twitter4j

l Moving onto using complex event processing systems e.g.
ESPER

Part One revisited

l Now researching a combination of traditional and streaming data
collection

l Using noSQL because of its scalability

l Using Cassandra for the implementation

l Scalable, provide more complex querying techniques, elastic and
dyanmic structure

Queries

l Decided to devise some general queries to use across the
architecture

l There are three categories of query:

l Historic

l Real time

l Real time + historic

Historic Query Example

l Query to identify a trend within a certain time bound

Select count(tweet(hash)) as TweetCount From H[Range τ
− now]

Having (TweetCount > x and τ <= t) OR (TweetCount < x
and τ <= t’)

Real Time

l A query to retrieve all tweets with a specified hash tag,
from a specified location from the stream

Select tweet as t
From S[now]

Where t.loc = loc and t.hash = h

Real Time + Historic

l A query to notify the user when a tweet has been
rewteeted x number of times, on the stream and within the
historic store

Select NotifyUser() From S[Now], H Where retweet > x

Part One + Part two

l Using streaming to collect the data

l Then analyse it in real time

l Modeling a Cassandra architecture that will allow the
execution of all three categories of query

l Combining real time and historic queries is the interesting
part

Future work

l Implement a set of general queries

l Conduct experiments which will execute the queries
across a database

l Investigate the performance and ease of these executions

l Scale out

Any Questions

	Slide 1
	Introduction
	Overview
	Brewer’s Theorem
	Relational Databases
	VoltDB
	Relational Cloud
	NoSQL
	NoSQL
	NoSQL Database Categories
	Key Values Stores
	DynamoDB
	Riak
	Document Stores
	MongoDB
	CouchDB
	Column or Extensible Stores
	BigTable
	Cassandra
	Graph Stores
	Neo4j
	Slide 22
	Other categories
	Other Categories
	Real World Application
	Real World Application
	Real Time Analytics
	The Next Step Data Collection. . .
	Traditional Data Collection
	Stream Data Collection
	Current Work with the Stream
	Part One revisited
	Queries
	Historic Query Example
	Real Time
	Real Time + Historic
	Part One + Part two	
	Future work
	Any Questions

