Java Message Service on HornetQ

PREVIOUS NOTE: In the fourth assignment you may want to use a JMS
provider different from the one we present in this document. Be aware that
some of the details (like creating queues or managing durable subscriptions)
are very likely to be different. An ESB project in JBoss Developer Studio and
the JBoss ESB 4.10 should be enough for most examples we provide here.

NOTE: your main source of documentation should be the complete user manual.
You can also use the quick start guide, for a faster reference.

HornetQ is a messaging system that can run integrated in JBoss 6'. The default
startup configuration of JBoss also initializes the HornetQQ messaging system.

Let us start by creating an example with two programs that exchange a pair of
text messages (Ping and Pong). For that purpose you should create a Java project
and import the following source code, using a class named Agent in the code
package.

package code;

import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.Destination;
import javax.jms.JMSException;
import javax.jms.MessageConsumer;
import javax.jms.MessageProducer;
import javax.jms.Session;

import javax.jms.TextMessage;
import javax.naming.InitialContext;

import javax.naming.NamingException;

public class Agent {
protected InitialContext init;
protected ConnectionFactory cf;
protected Connection conn;
protected Session session;

public Agent() throws NamingException, JMSException {

1 At the moment we write this document, JBoss 7 is out there already, but it
seems to be poorly documented. Use it at your own risk.

init = new InitialContext();

cf = (ConnectionFactory) init.lookup("ConnectionFactory");
conn = cf.createConnection();

createSession();

conn.start(Q);

3

protected void createSession() throws JIMSException {
session = conn.createSession(false,
Session.AUTO_ACKNOWLEDGE);

3

public void send(String outboxname, String text)
throws NamingException, JIMSException {
Destination outbox = (Destination) init.lookup(outboxname);
MessageProducer sndr = session.createProducer(outbox);
TextMessage msg = session.createTextMessage(text);
shdr.send(msg);
shdr.close();

3

public String receive(String inboxname)
throws NamingException, JMSException {
Destination inbox = (Destination) init.lookup(inboxname);
MessageConsumer cnsmr = session.createConsumer(inbox);
TextMessage replymsg = (TextMessage) cnsmr.receive();
cnhsmr.close();
return replymsg.getText();

3

public void finish() throws JMSException {
conn.close();

3

This Agent class creates all objects up to the session in the constructor, and
includes one method to send messages, another one to receive, and a final one to
close the connection. You should never forget to close the connection or
otherwise you may have to wait for a relatively long period of time before being
able to connect to the same queue again. The class also includes a method called
createSession(), which you can override to create a new agent with transacted
sessions, if you want to try more complex examples.

Based on the Agent class we define Ping:

package code;

public class Ping extends Thread {
private Agent ba;

public Ping(Agent ba) {
this.ba = ba;

ks
public void run() {
try {
ba.send("/queue/Pong", "Hello Pong, my name 1is
Ping");
String res = ba.receive("/queue/Ping");
System.out.println("Ping got: " + res);
ba.finish(Q);
} catch (Exception e) {
e.printStackTrace(Q);
ks
ks
bs
The Pong:
package code;
public class Pong extends Thread {
Agent ba;
public Pong(Agent ba) {
this.ba = ba;
ks
public void run() {
try {
String res = ba.receive("/queue/Pong");
System.out.println("Pong got: " + res);
ba.send("/queue/Ping", "Hello Ping, my name 1is

Pong");
ba.finish(Q);
ks
catch (Exception e) {
e.printStackTrace();

s

And finally the main() method. Note the differences in the packages, as this
latter class belongs to the default package.

import javax.jms.JMSException;
import javax.naming.NamingException;

import code.Agent;
import code.Ping;
import code.Pong;

public class RunNonTransactedl {

public static void main(String[] args)
throws NamingException, JMSException {
Agent aping = new Agent();
Ping pi = new Ping(aping);
pi.startQ);

Agent apong = new Agent();
Pong po = new Pong(apong);
po.start();

If you used NetBeans or Eclipse, your source code should now be heavily
underlined in red. This happens because you need a library to your project —
jbossall-client.jar. You can find this library at $JBOSS_HOME/client (you can use
the “Add External JARs” option to add it):

([TON) Properties for jms-tutorial-client
type filter text Java Build Path v v
¥ Resource)
Builders | (#Source [ZProjects | g Libraries | <, Order and Export ! T’
Java Build Path i !
» Java Code Style JARs and class folders on the build path: '
»Java Compiler P (g jbossall-client.jar - /Users/nuno/Documents/tech/jboss-6.0.0.Final/client (Add JARS...) '
I Java Editor) > =, JRE System Library [JavaSE-1.6] !
Jav:fdoc Location e AddiExtemal JARS N\ ‘
Project Facets \ J/
Project References !
Refactoring History (Add Variable...) '
Run/Debug Settings |
P Task Repository - - N\ '
Add Library...
Task Tags = Y ||
»Validation P N\ |
WikiText - Add Class Folder...) !
(3 '
(_ Add External Class Folder...) !
Edit...
Remove A
v
1@| (Cancel) (OK)
A

Unfortunately, the code is still not working... If you pay attention to the source,
you will notice that the sender and receiver exchange messages through two
queues named /queue/Ping and /queue/Pong. This can only work if we
configure this queue in the file hornetg-jms.xml in the directory
$IBOSS_HOME/server/default/deploy/hornetq. Fortunately, this is fairly
easy (you may find a couple of differences comparing to the initial state of the
same file in your installation, but only the addition of the last two queue
elements is important):

<configuration xmlns="urn:hornetqg"”
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemalLocation="urn:hornetq /schema/hornetq-jms.xsd">

<connection-factory name="NettyConnectionFactory">
<connectors>
<connector-ref connector-name="netty"/>
</connectors>
<entries>
<entry name="/ConnectionFactory"/>
<entry name="/XAConnectionFactory"/>
</entries>
</connection-factory>

<topic name="PlayJMSTopic">
<entry name="/topic/PlayJMSTopic"/>
</topic>

<queue name="DLQ">

<entry name="/queue/DLQ"/>
</queue>
<queue name="ExpiryQueue">

<entry name="/queue/ExpiryQueue’/>
</queue>

<queue name="Ping">
<entry name="/queue/Ping"/>
</queue>

<queue name="Pong">
<entry name="/queue/Pong"/>

</queue>

</ configuration>

Again, this is not enough. You still need to define the symbol
java.naming. factory.initial required by the Java Naming and Directory
Information (JNDI) client (the messaging server automatically launches the JNDI
server). For this you will need a file named jndi.properties with the following
content:

java.naming.factory.initial=org. jnp.interfaces.NamingContextFactory
java.naming.provider.url=jnp://localhost:1099
java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces

You must include this file in the root of your source folder directory (typically
the “src’ folder). After this step, your program should now run.

As an optional step, it can be useful to have the JMS API documentation directly
in your IDE. For this you can use the zipped source code of the J]MS API (jms-
api-1.1-source.zip) and simply add it to your project build path as you did with
any other regular jar file earlier. After this step you will have the JMS API
documentation available in your IDE.

Temporary Queues

In a client/server environment it may be useful to create temporary queues. A
client can send a message to a server and specify (in that message) a temporary
queue that the server application can use to put a response later on. This is

partially illustrated by the following code (session corresponds to a regular
javax.jms.Session):

TextMessage message = session.createTextMessage("Hello!");
Queue replyQueue = session.createTemporaryQueue();
message.setIJMSReplyTo(replyQueue);

After obtaining the message sent by the client, the server application can know
where to send its reply by using message.getIJMSReplyTo() to obtain a
reference to the client’s temporary queue.

Utilization of Topics

We now exemplify the utilization of topics in the Java Message Service. We will
do it without touching our Agent class! This is a very interesting result from the
Object Oriented features of JMS. Destination, Connection, Session, etc., are, in
fact interfaces that can refer both to Queue objects and to Topic objects as well.
For convenience, we reproduce here a table you can find in the Java EE 6 APIL
The only difference is set in the configuration file hornetqg-jms.xml in the
attribute name of the element entry. You can check for the topic PlayJMSTopic
in the configuration file we showed above.

Relationship of PTP and Pub/Sub interfaces

JMS Common PTP Domain Pub/Sub Domain |
ConnectionFactory | QueueConnectionFactory TopicConnectionFactory
Connection QueueConnection TopicConnection
Destination Queue Topic

Session QueueSession TopicSession
MessageProducer QueueSender TopicPublisher
MessageConsumer | QueueReceiver TopicSubscriber

You should be aware that these examples cover only the introductory utilization
of JMS. You can find a lot more in other documentation.

In the topic example, we will have one publisher, and four subscribers (all
running the same code). We start by the publisher:

package code;

public class Publisher extends Thread {

private Agent ba;
private String topicname;

public Publisher(Agent ba, String topicname) {
this.ba = ba;
this.topichame = topicname;

3

public void run() {
try {
ba.send(this.topicname, "Hello folks, I think I am a
publisher");
ba.finish(Q);
} catch (Exception e) {
e.printStackTrace();

3

Now the subscriber:

package code;

public class Subscriber extends Thread {
private Agent ba;
private String topicname;

public Subscriber(Agent ba, String topicname) {
this.ba = ba;
this.topichame = topicname;

ks
public void run() {
try {
String res = ba.receive(this.topicname);
System.out.println("Subscriber " +

Thread.currentThread().getName() + " got: + res);

ba.finish(Q);

ks

catch (Exception e) {
e.printStackTrace();

3

And now, let’s run them:

import javax.jms.JMSException;
import javax.naming.NamingException;

import code.Agent;
import code.Publisher;
import code.Subscriber;

public class RunNonTransacted2 {
private final static int subscribers = 4;

public static void main(String[] args) throws NamingException,
IMSException {
String topic = "/topic/PlayJMSTopic";

for (int i = @; i < subscribers ; i++) {
Agent sub = new Agent();
Subscriber po = new Subscriber(sub, topic);
po.start(Q);

ks

Agent pub = new Agent();
Publisher pi = new Publisher(pub, topic);
pi.startQ);

Durable Subscriptions

By default, all messages arriving at a topic while the subscriber is switched off
are lost. However, we can create durable subscriptions to force the server to store
all messages going through a given topic for later delivery. For this to work, we
must authenticate the client, set its identity and uniquely identify the
subscription. The code highlighted in yellow shows what changes one has to do
to the original code:

InitialContext initCtx = new InitialContext();
ConnectionFactory cf = (ConnectionFactory)
initCtx.lookup("ConnectionFactory");

this.conn = cf.createConnection(myname, passwd);
this.conn.setClientID(myname);

this.dest = (Destination) initCtx.lookup(topicName);
this.session = this.conn.createTopicSession(false,
TopicSession.AUTO_ACKNOWLEDGE);

this.conn.start(Q);

MessageConsumer subs = this.session.createDurableSubscriber(this.dest,
subscriptionid);

To make this code runnable, students must now create the appropriate user and
authorize this type of user to create durable subscriptions. Refer to the directory
conf/props. The file hornetqg-users.properties sets the users and their
passwords, while the file hornetqg-roles.properties assigns roles for the
users. In the version of the JBoss we tried, a user named John existed already,
with the password needle. You may try your luck with these credentials.

However, before it works you need to authorize the “guest” users to create
durable subscriptions in the file hornetg-configuration.xml, (you should add
the highlighted lines):

<security-settings>
<security-setting match="#">
<permission type="createDurableQueue" roles="guest"/>
<permission type="deleteDurableQueue" roles="guest"/>
<permission type="createTempQueue" roles="guest"/>
<permission type="deleteTempQueue" roles="guest"/>
<permission type="consume" roles="guest"/>
<permission type="send" roles="guest"/>
</security-setting>
</security-settings>

Bibliography
“Java Message Service”. Mark Richards, Richard Monson-Haefel, David A.
Chappell. O'Reilly Media; Second Edition edition (May 28, 2009)

http://download.oracle.com/javaee/6/api/

