
Before we begin

1 git clone git@github.com:qa/pv243-a4m36jee-2016-infinispan-

seminar-autumn.git

2 cd pv243-a4m36jee-2016-infinispan-seminar-autumn

3 git checkout task1

4 mvn clean package

5 mvn wildfly:run

Optionally:

1 wget http://downloads.jboss.org/infinispan/8.2.4.Final/

infinispan-server-8.2.4.Final-bin.zip

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 1 / 54

Infinispan

Vojtěch Juránek

JBoss - a division by Red Hat

3. 11. 2017, CTU FEE, Prague

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 2 / 54

Course materials download

Course materials, including this presentation:
https://developer.jboss.org/wiki/AdvancedJavaEELabFELCVUTPodzim2017

This presentation (and source code):
https://github.com/vjuranek/presentations/tree/master/CTU_Prague2017_fall

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 3 / 54

https://developer.jboss.org/wiki/AdvancedJavaEELabFELCVUTPodzim2017
https://github.com/vjuranek/presentations/tree/master/CTU_Prague2017_fall

Data today

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 4 / 54

Data today

Source: http://www.couchbase.com/nosql-resources/what-is-no-sql

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 5 / 54

http://www.couchbase.com/nosql-resources/what-is-no-sql

How big is Big data?

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 6 / 54

How big is Big data?

Source: https://twitter.com/DEVOPS_BORAT/status/288698056470315008

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 6 / 54

https://twitter.com/DEVOPS_BORAT/status/288698056470315008

How big is Big data?

Source: https://twitter.com/DEVOPS_BORAT/status/288698056470315008

Data collection so large and complex it’s impossible to process it on one

computer

You can scale up, but sooner or later you’ll have to scale out

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 6 / 54

https://twitter.com/DEVOPS_BORAT/status/288698056470315008

Structure of the data

Source: http://www.couchbase.com/nosql-resources/what-is-no-sql

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 7 / 54

http://www.couchbase.com/nosql-resources/what-is-no-sql

Big data - some of the challenges

Analysis run on top of the huge amount of data

Ability to store huge amount of unstructured data (often for performance

reasons)

But also ability to talk to RDBMS or query structured data is often needed

as well

Highly scalable solution (also because of cost effectiveness)

Cloud architecture - everything is ephemeral

Information privacy

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 8 / 54

NoSQL

Nature of the data

More flexible data mode

Better scalablity

Performance

Source: www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQL-Whitepaper.pdf

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 9 / 54

www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQL-Whitepaper.pdf

NoSQL

Nature of the data

More flexible data mode

Better scalablity

Performance

Source: www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQL-Whitepaper.pdf

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 9 / 54

www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQL-Whitepaper.pdf

NoSQL

Nature of the data

More flexible data mode

Better scalablity

Performance

Source: www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQL-Whitepaper.pdf

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 9 / 54

www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQL-Whitepaper.pdf

NoSQL

Nature of the data

More flexible data mode

Better scalablity

Performance

Source: www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQL-Whitepaper.pdf

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 9 / 54

www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQL-Whitepaper.pdf

NoSQL

Source: https://twitter.com/devops_borat/status/141368065110708224

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 10 / 54

https://twitter.com/devops_borat/status/141368065110708224

What is a in-memory data grid?

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 11 / 54

What is a data grid?

In-memory = all data is kept in memory
Grid = too big to kept data on one node, data is distributed across

more/many nodes

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 12 / 54

What is a data grid?

In-memory = all data is kept in memory
Grid = too big to kept data on one node, data is distributed across

more/many nodes

An in-memory distributed data store designed for fast access to large

volumes of data and scalability.

Commonly a complementary layer to the relational database and the

application.

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 12 / 54

What is a data grid?

In-memory = all data is kept in memory
Grid = too big to kept data on one node, data is distributed across

more/many nodes

An in-memory distributed data store designed for fast access to large

volumes of data and scalability.

Commonly a complementary layer to the relational database and the

application.

Key data grid characteristics:

In-memory, distributed caching

Elastic and scalable

Advanced querying

Data replication

Processing for streaming data

Transaction capabilities

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 12 / 54

Why in-memory

Source: Part of xkcd #908

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 13 / 54

http://xkcd.com/908/

Why in-memory

Lots of data is needed in real-time (BigData → FastData)

Some tasks can be completed much faster when data are kept in memory

Keeping data in memory during processing of whole application stack,

not only during processing in one application in the stack

With data replication you can keep your data only in memory (no need to

store them in persistent storage)

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 14 / 54

Why in-memory

Lots of data is needed in real-time (BigData → FastData)

Some tasks can be completed much faster when data are kept in memory

Keeping data in memory during processing of whole application stack,

not only during processing in one application in the stack

With data replication you can keep your data only in memory (no need to

store them in persistent storage)

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 14 / 54

Why in-memory

Lots of data is needed in real-time (BigData → FastData)

Some tasks can be completed much faster when data are kept in memory

Keeping data in memory during processing of whole application stack,

not only during processing in one application in the stack

With data replication you can keep your data only in memory (no need to

store them in persistent storage)

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 14 / 54

Why in-memory

Lots of data is needed in real-time (BigData → FastData)

Some tasks can be completed much faster when data are kept in memory

Keeping data in memory during processing of whole application stack,

not only during processing in one application in the stack

With data replication you can keep your data only in memory (no need to

store them in persistent storage)

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 14 / 54

Infinispan

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 15 / 54

Infinispan

https://infinispan.org

https://github.com/infinispan

(Apache License, v2.0)

In-memory data grid platform, written in

Java

Schema-less (optionally), No-SQL

key-value data store

Distributed cache - offers massive

memory

Elastic and scalable - can run on

hundreds of nodes

Highly available - no SPOF, resilient to

node failures

Multi-version concurrency control (MVCC)

Transactional

Queryable

Processing for streaming data

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 16 / 54

https://infinispan.org
https://github.com/infinispan

Infinispan cache

Infinispan takes care about all that hard stuff.

From user perspective Infinispan cache is just a map!

1 DefaultCacheManager cacheManager = new DefaultCacheManager(

"my_ispn_config.xml");

2 Cache<String, String> cache = cacheManager.getCache("

myCache");

3

4 cache.put("key", "value");

5 String value = cache.get("key");

ISPN configuration can be either programmatic (preferred for demos) or

via XML (preferred in production as you don’t have to re-compile the code

due to conf. changes).

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 17 / 54

Infinispan (embedded) high level architecture

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 18 / 54

Basic features: eviction

Removing entries from the cache: eviction

1 ConfigurationBuilder().eviction().size(5).strategy(

EvictionStrategy.LRU)

1 Configuration conf = new ConfigurationBuilder().eviction().size

(5).strategy(EvictionStrategy.LIRS).build();

2 EmbeddedCacheManager ecm = new DefaultCacheManager(conf);

3 Cache<String, String> cache = ecm.getCache();

4

5 for (int i = 0; i < 100; i++) {

6 cache.put("key" + i, "value" + i);

7 }

8

9 System.out.printf("Cache size: %d\n", cache.size());

10 ecm.stop();

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 19 / 54

Basic features: cache listener

1 cache.addListener(new EntryCreatedListener());

There are actually two events emitted, before given operation happens

and once it’s finished.

You can distinguish them by calling isPre() on the event (true for

events prior the operation)

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 20 / 54

1 @Listener

2 public class EntryCreatedListener {

3 @CacheEntryCreated

4 public void onCreated(CacheEntryCreatedEvent e) {

5 if (e.isPre()) {

6 System.out.printf("Created %s -> %s\n", e.getKey(),

e.getValue());

7 }

8 }

9 }

1 EmbeddedCacheManager cm = new DefaultCacheManager();

2 Cache<String, String> cache = cm.getCache();

3 cache.addListener(new EntryCreatedListener());

4

5 for (int i = 0; i < 100; i++) {

6 cache.put("key" + i, "value" + i);

7 }

8 cm.stop();

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 21 / 54

Basic features: CDI

1 @Qualifier

2 @Target({ElementType.FIELD, ElementType.PARAMETER, ElementType.

METHOD})

3 @Retention(RetentionPolicy.RUNTIME)

4 @Documented

5 public @interface EvictionCache {

6 }

1 @ConfigureCache("testcache")

2 @EvictionCache

3 @Produces

4 public Configuration greetingCacheConfiguration() {

5 return new ConfigurationBuilder().eviction().strategy(

EvictionStrategy.LRU).size(5).build();

6 }

1 @Inject

2 @EvictionCache

3 private Cache<String, String> cache;

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 22 / 54

Persistence: Cache stores

A way how to store cache content in some external (persistent) storage.

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 23 / 54

Persistence: Cache stores

A way how to store cache content in some external (persistent) storage.
Two modes:

Synchronous (write-through)

Asynchronous (write-behind)

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 23 / 54

Persistence: Cache stores

A way how to store cache content in some external (persistent) storage.
Two modes:

Synchronous (write-through)

Asynchronous (write-behind)

Cache stores:

Single file store and soft-index file store

JDBC and JPA cache stores

LevelDB cache store

Cloud cache store

Remote store

Cassandra store

. . . and others

Also possible to define custom cache store.

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 23 / 54

Persistence: file cache store example

1 cfg.persistence().addSingleFileStore().location("/tmp/ispn-

store");

1 ConfigurationBuilder cfg = new ConfigurationBuilder();

2 cfg.persistence().addSingleFileStore();

3 DefaultCacheManager cm = new DefaultCacheManager(cfg.build());

4 Cache<String, String> cache = cm.getCache("test");

5

6 for (int i = 0; i < 100; i++) {

7 cache.put("key" + i, "value" + i);

8 }

9 System.out.printf("Cache size: %d\n", cache.size());

10

11 cache.stop();

12 cache.start();

13

14 System.out.printf("Cache size: %d\n", cache.size());

15 cm.stop();

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 24 / 54

Querying

Support for indexing and searching of objects stored in the cache.

Search for data using data attributes instead of keys.

Uses Hibernate Search and Apache Lucene to index and search objects.

Queries can be constructed using ISPN fluent DSL API, Hibernate

Search Query DSL or directly Lucene query API.

Needs some data schema (protobuf file or annotations).

Combine queries and aggregation functions (but doesn’t support joins).

Sort, filter, and paginate query results.

Support for index or non-indexed queries.

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 25 / 54

Querying

Support for indexing and searching of objects stored in the cache.

Search for data using data attributes instead of keys.

Uses Hibernate Search and Apache Lucene to index and search objects.

Queries can be constructed using ISPN fluent DSL API, Hibernate

Search Query DSL or directly Lucene query API.

Needs some data schema (protobuf file or annotations).

Combine queries and aggregation functions (but doesn’t support joins).

Sort, filter, and paginate query results.

Support for index or non-indexed queries.

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 25 / 54

Querying

Support for indexing and searching of objects stored in the cache.

Search for data using data attributes instead of keys.

Uses Hibernate Search and Apache Lucene to index and search objects.

Queries can be constructed using ISPN fluent DSL API, Hibernate

Search Query DSL or directly Lucene query API.

Needs some data schema (protobuf file or annotations).

Combine queries and aggregation functions (but doesn’t support joins).

Sort, filter, and paginate query results.

Support for index or non-indexed queries.

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 25 / 54

Querying

Support for indexing and searching of objects stored in the cache.

Search for data using data attributes instead of keys.

Uses Hibernate Search and Apache Lucene to index and search objects.

Queries can be constructed using ISPN fluent DSL API, Hibernate

Search Query DSL or directly Lucene query API.

Needs some data schema (protobuf file or annotations).

Combine queries and aggregation functions (but doesn’t support joins).

Sort, filter, and paginate query results.

Support for index or non-indexed queries.

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 25 / 54

Querying

Support for indexing and searching of objects stored in the cache.

Search for data using data attributes instead of keys.

Uses Hibernate Search and Apache Lucene to index and search objects.

Queries can be constructed using ISPN fluent DSL API, Hibernate

Search Query DSL or directly Lucene query API.

Needs some data schema (protobuf file or annotations).

Combine queries and aggregation functions (but doesn’t support joins).

Sort, filter, and paginate query results.

Support for index or non-indexed queries.

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 25 / 54

Querying

Support for indexing and searching of objects stored in the cache.

Search for data using data attributes instead of keys.

Uses Hibernate Search and Apache Lucene to index and search objects.

Queries can be constructed using ISPN fluent DSL API, Hibernate

Search Query DSL or directly Lucene query API.

Needs some data schema (protobuf file or annotations).

Combine queries and aggregation functions (but doesn’t support joins).

Sort, filter, and paginate query results.

Support for index or non-indexed queries.

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 25 / 54

Querying

Support for indexing and searching of objects stored in the cache.

Search for data using data attributes instead of keys.

Uses Hibernate Search and Apache Lucene to index and search objects.

Queries can be constructed using ISPN fluent DSL API, Hibernate

Search Query DSL or directly Lucene query API.

Needs some data schema (protobuf file or annotations).

Combine queries and aggregation functions (but doesn’t support joins).

Sort, filter, and paginate query results.

Support for index or non-indexed queries.

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 25 / 54

Querying

Support for indexing and searching of objects stored in the cache.

Search for data using data attributes instead of keys.

Uses Hibernate Search and Apache Lucene to index and search objects.

Queries can be constructed using ISPN fluent DSL API, Hibernate

Search Query DSL or directly Lucene query API.

Needs some data schema (protobuf file or annotations).

Combine queries and aggregation functions (but doesn’t support joins).

Sort, filter, and paginate query results.

Support for index or non-indexed queries.

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 25 / 54

Examples: querying

1 public class Person {

2 String name;

3 String surname;

4

5 public Person(String name, String surname) {

6 this.name = name;

7 this.surname = surname;

8 }

9 }

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 26 / 54

Examples: querying

1 ConfigurationBuilder cb = new ConfigurationBuilder();

2 EmbeddedCacheManager cm = new DefaultCacheManager(cb.build());

3 Cache<String, Person> cache = cm.getCache();

4 cache.put("person1", new Person("Will", "Shakespeare"));

5

6 // Obtain a query factory for the cache

7 QueryFactory<?> queryFactory = Search.getQueryFactory(cache);

8

9 // Construct a query

10 Query query = queryFactory.from(Person.class).having("name").eq

("Will").toBuilder().build();

11

12 // Execute the query

13 List<Person> matches = query.list();

14

15 matches.forEach(person -> System.out.printf("Match: %s", person

));

16 cm.stop();

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 27 / 54

Transactions, consistency, locking and isolation

JTA-compliant transactions

Deadlock detection and recovery (e.g. when ISPN fails during commit

phase of the transaction)

Data versioning

Ensures consistency of data, consistency guarantee: lock for key K is

always acquired on the same node of the cluster (key primary owner),
regardless of where the transaction originates

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 28 / 54

Commercial break: JGroups

JGroups is a toolkit for reliable messaging written in Java.

It can be used to create clusters whose nodes can send messages to each

other.

Main features:

Cluster creation and deletion. Cluster nodes can be spread across LANs

or WANs.

Membership detection and notification about joined/left/crashed cluster

nodes.

Sending and receiving of node-to-cluster messages (point-to-multipoint).

Sending and receiving of node-to-node messages (point-to-point).

Detection and removal of crashed nodes.

More about JGroups in upcoming WildFly clustering course!

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 29 / 54

http://jgroups.org/

Commercial break: JGroups

JGroups is a toolkit for reliable messaging written in Java.

It can be used to create clusters whose nodes can send messages to each

other.

Main features:

Cluster creation and deletion. Cluster nodes can be spread across LANs

or WANs.

Membership detection and notification about joined/left/crashed cluster

nodes.

Sending and receiving of node-to-cluster messages (point-to-multipoint).

Sending and receiving of node-to-node messages (point-to-point).

Detection and removal of crashed nodes.

More about JGroups in upcoming WildFly clustering course!

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 29 / 54

http://jgroups.org/

Clustering modes

Under the hood leverages JGroups project for clustering.

Data is distributed and replicated in the background.

Nodes can be added or removed smoothly.

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 30 / 54

Clustering modes

Under the hood leverages JGroups project for clustering.

Data is distributed and replicated in the background.

Nodes can be added or removed smoothly.

Local - no clustering

Replicated

Invalidation

Distributed

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 30 / 54

Infinispan modes

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 31 / 54

Remote protocols

Hot Rod

hashing and topology aware

failover during topology changes

smart request routing

Memcached

REST

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 32 / 54

Remote protocols

Hot Rod

hashing and topology aware

failover during topology changes

smart request routing

Memcached

REST

Protocol Format Client libs Clustered Smart routing Load balancing
/ Failover

Hot Rod binary Java, C++, yes yes dynamic
C#, JS

Memcached text many yes no only predefined server list

REST text any HTTP client yes no any HTTP load balancer

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 32 / 54

Hot Rod clients

Compatible with Java and non-Java platforms. Based on Protocol Buffers -

Google’s data interchange format.

Clients for

Java

C#

C++

JavaScript

Python

Ruby

Python and Ruby clients have only basic functionality.

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 33 / 54

Some other features - brief and selective list

Full JSR-107 support (Java Temporary Caching API)

Advanced security feature (role based access, encryption, integration

with LDAP, Kerberos etc.)

Remote events

Continuous query

Client near cache

Rolling upgrades

Cross data center replication (also Hot Rod clients support failover to

another data center)

Command line interface

Distributed executors

Distributed streams

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 34 / 54

Some other features - brief and selective list

Full JSR-107 support (Java Temporary Caching API)

Advanced security feature (role based access, encryption, integration

with LDAP, Kerberos etc.)

Remote events

Continuous query

Client near cache

Rolling upgrades

Cross data center replication (also Hot Rod clients support failover to

another data center)

Command line interface

Distributed executors

Distributed streams

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 34 / 54

Some other features - brief and selective list

Full JSR-107 support (Java Temporary Caching API)

Advanced security feature (role based access, encryption, integration

with LDAP, Kerberos etc.)

Remote events

Continuous query

Client near cache

Rolling upgrades

Cross data center replication (also Hot Rod clients support failover to

another data center)

Command line interface

Distributed executors

Distributed streams

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 34 / 54

Some other features - brief and selective list

Full JSR-107 support (Java Temporary Caching API)

Advanced security feature (role based access, encryption, integration

with LDAP, Kerberos etc.)

Remote events

Continuous query

Client near cache

Rolling upgrades

Cross data center replication (also Hot Rod clients support failover to

another data center)

Command line interface

Distributed executors

Distributed streams

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 34 / 54

Some other features - brief and selective list

Full JSR-107 support (Java Temporary Caching API)

Advanced security feature (role based access, encryption, integration

with LDAP, Kerberos etc.)

Remote events

Continuous query

Client near cache

Rolling upgrades

Cross data center replication (also Hot Rod clients support failover to

another data center)

Command line interface

Distributed executors

Distributed streams

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 34 / 54

Some other features - brief and selective list

Full JSR-107 support (Java Temporary Caching API)

Advanced security feature (role based access, encryption, integration

with LDAP, Kerberos etc.)

Remote events

Continuous query

Client near cache

Rolling upgrades

Cross data center replication (also Hot Rod clients support failover to

another data center)

Command line interface

Distributed executors

Distributed streams

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 34 / 54

Some other features - brief and selective list

Full JSR-107 support (Java Temporary Caching API)

Advanced security feature (role based access, encryption, integration

with LDAP, Kerberos etc.)

Remote events

Continuous query

Client near cache

Rolling upgrades

Cross data center replication (also Hot Rod clients support failover to

another data center)

Command line interface

Distributed executors

Distributed streams

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 34 / 54

Some other features - brief and selective list

Full JSR-107 support (Java Temporary Caching API)

Advanced security feature (role based access, encryption, integration

with LDAP, Kerberos etc.)

Remote events

Continuous query

Client near cache

Rolling upgrades

Cross data center replication (also Hot Rod clients support failover to

another data center)

Command line interface

Distributed executors

Distributed streams

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 34 / 54

Some other features - brief and selective list

Full JSR-107 support (Java Temporary Caching API)

Advanced security feature (role based access, encryption, integration

with LDAP, Kerberos etc.)

Remote events

Continuous query

Client near cache

Rolling upgrades

Cross data center replication (also Hot Rod clients support failover to

another data center)

Command line interface

Distributed executors

Distributed streams

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 34 / 54

Some other features - brief and selective list

Full JSR-107 support (Java Temporary Caching API)

Advanced security feature (role based access, encryption, integration

with LDAP, Kerberos etc.)

Remote events

Continuous query

Client near cache

Rolling upgrades

Cross data center replication (also Hot Rod clients support failover to

another data center)

Command line interface

Distributed executors

Distributed streams

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 34 / 54

Examples of usecases

Cache for backend

Fast data backend

HTTP session off-loading

Hibernate 2-nd level cache

In-memory Lucene index

Fast data backend for Apache Spark or Hadoop

. . .

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 35 / 54

OpenShift

Try Infinispan on OpenShift

https://www.openshift.com/

Platform as a Service (PaaS)

Source: http://dilbert.com/strip/2011-01-07

Search OpenShift demos on

https://github.com/infinispan-demos/links

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 36 / 54

https://www.openshift.com/
http://dilbert.com/strip/2011-01-07
https://github.com/infinispan-demos/links

Summary

Amount and structure of the data has changed rapidly during past couple

of years.

Cloud applications and Big/Fast data require new approaches and tools,

data grids are important building blocks of such solutions.

Infinispan is mature and feature rich data grid solution, which integrates

well with other frameworks and can be used as backbone for new

generation of enterprise applications.

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 37 / 54

Summary

Amount and structure of the data has changed rapidly during past couple

of years.

Cloud applications and Big/Fast data require new approaches and tools,

data grids are important building blocks of such solutions.

Infinispan is mature and feature rich data grid solution, which integrates

well with other frameworks and can be used as backbone for new

generation of enterprise applications.

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 37 / 54

Summary

Amount and structure of the data has changed rapidly during past couple

of years.

Cloud applications and Big/Fast data require new approaches and tools,

data grids are important building blocks of such solutions.

Infinispan is mature and feature rich data grid solution, which integrates

well with other frameworks and can be used as backbone for new

generation of enterprise applications.

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 37 / 54

Summary

Amount and structure of the data has changed rapidly during past couple

of years.

Cloud applications and Big/Fast data require new approaches and tools,

data grids are important building blocks of such solutions.

Infinispan is mature and feature rich data grid solution, which integrates

well with other frameworks and can be used as backbone for new

generation of enterprise applications.

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 37 / 54

Materials from this course

This presentation:
https://github.com/vjuranek/presentations/tree/master/CTU_Prague2016_fall

ISPN embedded tutorial (The Weather App): http://infinispan.org/tutorials/embedded

GitHub repo: https://github.com/infinispan/infinispan-embedded-tutorial

ISPN simple tutorials: https://github.com/infinispan/infinispan-simple-tutorials

ISPN qickstarts (simple applications) at the bottom of the page:
http://infinispan.org/tutorials

Some more ISPN snippets: https://github.com/vjuranek/infinispan-snippets

Infinispan downloads:

Main ISPN download page: http://infinispan.org/download/

If you want to play with ISPN in Docker:
https://hub.docker.com/r/jboss/infinispan-server/

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 38 / 54

https://github.com/vjuranek/presentations/tree/master/CTU_Prague2016_fall
http://infinispan.org/tutorials/embedded
https://github.com/infinispan/infinispan-embedded-tutorial
https://github.com/infinispan/infinispan-simple-tutorials
http://infinispan.org/tutorials
https://github.com/vjuranek/infinispan-snippets
http://infinispan.org/download/
https://hub.docker.com/r/jboss/infinispan-server/

Further study materials

Infinispan documentation

JSR 107: JCACHE - Java Temporary Caching API

M. Surtani, F. Marchioni, Infinispan Data Grid Platform, Packt Publishing,

2012

W. dos Santos, Infinispan Data Grid Platform Definitive Guide, Packt

Publishing, 2015

M. Kleppmann, Designing Data-Intensive Applications, O’Reilly Media,

Inc., 2016

M. Takada, Distributed systems for fun and profit

B. Burke, A. Rubinger, Enterprise JavaBeans 3.1, 6th Edition, O’Reilly

Media, Inc., 2010

Coursera: Cloud Computing Concepts

Coursera: Cloud Computing Concepts: Part 2

Coursera: Cloud Computing Applications

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 39 / 54

http://infinispan.org/documentation/
https://jcp.org/en/jsr/detail?id=107
http://book.mixu.net/distsys/
https://www.coursera.org/course/cloudcomputing
https://www.coursera.org/course/cloudcomputing2
https://www.coursera.org/course/cloudapplications

Student projects/theses with Infinispan

https://developer.jboss.org/wiki/StudentContributorProjectsWithInfinispan

https://diplomky.redhat.com/

Inerested to work with Infinispan but non of the theses is interesting for you - drop me an email on
vjuranek[at]redhat.com, we try to figure out something.

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 40 / 54

https://developer.jboss.org/wiki/StudentContributorProjectsWithInfinispan
https://diplomky.redhat.com/

Question?

Source: https://xkcd.com/1289/

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 41 / 54

https://xkcd.com/1289/

http://infinispan.org/

Thank you for your attention!

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 42 / 54

http://infinispan.org/

Backup slides

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 43 / 54

Infinispan embedded tutorial

Simple weather app using embedded Infinispan

http://infinispan.org/tutorials/embedded/

https://github.com/infinispan/infinispan-embedded-tutorial

1 git clone https://github.com/infinispan/infinispan-embedded

-tutorial.git

2 cd infinispan-embedded-tutorial

3 git checkout -f step-2

4 sed -i ’s/<!-- a/<a/;s/t -->/t>/’ pom.xml #switch to local

random weather service

5 mvn clean package

6 mvn exec:exec

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 44 / 54

http://infinispan.org/tutorials/embedded/
https://github.com/infinispan/infinispan-embedded-tutorial

Basic features: expiration

Removing entries from the cache: expiration

1 ConfigurationBuilder().expiration().maxIdle(5000L)

1 Configuration conf = new ConfigurationBuilder().expiration().

maxIdle(expiration).build();

2 EmbeddedCacheManager ecm = new DefaultCacheManager(conf);

3 Cache<String, String> cache = ecm.getCache();

4

5 for (int i = 0; i < 100; i++) {

6 cache.put("key" + i, "value" + i);

7 }

8

9 System.out.printf("Cache size: %d\n", cache.size());

10 Thread.sleep(expiration);

11 System.out.printf("Cache size: %d\n", cache.size());

12

13 ecm.stop();

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 45 / 54

Examples: querying with index

1 @Indexed

2 public class Person {

3 @Field(analyze = Analyze.NO)

4 String name;

5

6 @Field(analyze = Analyze.NO, indexNullAs = Field.

DEFAULT_NULL_TOKEN)

7 String surname;

8

9 public Person(String name, String surname) {

10 this.name = name;

11 this.surname = surname;

12 }

13 }

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 46 / 54

Examples: querying with index

1 ConfigurationBuilder cb = new ConfigurationBuilder();

2 cb.indexing().index(Index.ALL); //.addProperty("default.

directory_provider", "ram");

3 EmbeddedCacheManager cm = new DefaultCacheManager(cb.build());

4 Cache<String, Person> cache = cm.getCache();

5 cache.put("person1", new Person("Will", "Shakespeare"));

6

7 // Obtain a query factory for the cache

8 QueryFactory<?> queryFactory = Search.getQueryFactory(cache);

9

10 // Construct a query

11 Query query = queryFactory.from(Person.class).having("name").eq

("Will").toBuilder().build();

12

13 // Execute the query

14 List<Person> matches = query.list();

15

16 matches.forEach(person -> System.out.printf("Match: %s", person

));

17 cm.stop();

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 47 / 54

Big data characteristics

Volume: unprecedented amount of data being stored

Velocity: speed at which the data is generated

Variety: the type and nature of the data - from structured data in

traditional databases to unstructured text documents, email, video, audio

etc.

Variability: the amount of incoming data can highly vary

Veracity: the quality of captured data can vary greatly as well

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 48 / 54

Analyst recognition

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 49 / 54

Integration with other frameworks

Hibernate

2-nd level cache

Lucene directory

In-memory Lucene index

Apache Camel

Infinispan component for Camel

Hadoop

In-memory data source for Hadoop cluster

Apache Spark

Data source for Spark map-reduce jobs

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 50 / 54

Transactions, consistency, locking and isolation (cont.)

Pessimistic and optimistic locking available

Pessimistic locking: resource is locked all the time during the transaction (in

ISPN when resource is changed, read is still possible).

Optimistic locking: state of the resource is saved at the beginning of the

transaction (prepare phase) and other transactions ca access the resource.

During commit phase of the resource is read again and if changed (write

skew), transaction is rolled back.

Isolation - how/when the changes made by one operation become visible
to other. Read committed and repeatable read isolation levels.

1 Thread1: tx.begin()
2 Thread1: cache.get(k) returns v
3 Thread2: tx.begin()
4 Thread2: cache.get(k) returns v
5 Thread2: cache.put(k, v2)
6 Thread2: tx.commit()
7 Thread1: cache.get(k)

With REPEATABLE READ, step 7 will still return v, while with

READ COMMITTED step 7 will return v2.

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 51 / 54

Transactions, consistency, locking and isolation (cont.)

Pessimistic and optimistic locking available

Pessimistic locking: resource is locked all the time during the transaction (in

ISPN when resource is changed, read is still possible).

Optimistic locking: state of the resource is saved at the beginning of the

transaction (prepare phase) and other transactions ca access the resource.

During commit phase of the resource is read again and if changed (write

skew), transaction is rolled back.

Isolation - how/when the changes made by one operation become visible
to other. Read committed and repeatable read isolation levels.

1 Thread1: tx.begin()
2 Thread1: cache.get(k) returns v
3 Thread2: tx.begin()
4 Thread2: cache.get(k) returns v
5 Thread2: cache.put(k, v2)
6 Thread2: tx.commit()
7 Thread1: cache.get(k)

With REPEATABLE READ, step 7 will still return v, while with

READ COMMITTED step 7 will return v2.

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 51 / 54

Transactions, consistency, locking and isolation (cont.)

Pessimistic and optimistic locking available

Pessimistic locking: resource is locked all the time during the transaction (in

ISPN when resource is changed, read is still possible).

Optimistic locking: state of the resource is saved at the beginning of the

transaction (prepare phase) and other transactions ca access the resource.

During commit phase of the resource is read again and if changed (write

skew), transaction is rolled back.

Isolation - how/when the changes made by one operation become visible
to other. Read committed and repeatable read isolation levels.

1 Thread1: tx.begin()
2 Thread1: cache.get(k) returns v
3 Thread2: tx.begin()
4 Thread2: cache.get(k) returns v
5 Thread2: cache.put(k, v2)
6 Thread2: tx.commit()
7 Thread1: cache.get(k)

With REPEATABLE READ, step 7 will still return v, while with

READ COMMITTED step 7 will return v2.

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 51 / 54

Transactions, consistency, locking and isolation (cont.)

Pessimistic and optimistic locking available

Pessimistic locking: resource is locked all the time during the transaction (in

ISPN when resource is changed, read is still possible).

Optimistic locking: state of the resource is saved at the beginning of the

transaction (prepare phase) and other transactions ca access the resource.

During commit phase of the resource is read again and if changed (write

skew), transaction is rolled back.

Isolation - how/when the changes made by one operation become visible
to other. Read committed and repeatable read isolation levels.

1 Thread1: tx.begin()
2 Thread1: cache.get(k) returns v
3 Thread2: tx.begin()
4 Thread2: cache.get(k) returns v
5 Thread2: cache.put(k, v2)
6 Thread2: tx.commit()
7 Thread1: cache.get(k)

With REPEATABLE READ, step 7 will still return v, while with

READ COMMITTED step 7 will return v2.

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 51 / 54

Transactions, consistency, locking and isolation (cont.)

Pessimistic and optimistic locking available

Pessimistic locking: resource is locked all the time during the transaction (in

ISPN when resource is changed, read is still possible).

Optimistic locking: state of the resource is saved at the beginning of the

transaction (prepare phase) and other transactions ca access the resource.

During commit phase of the resource is read again and if changed (write

skew), transaction is rolled back.

Isolation - how/when the changes made by one operation become visible
to other. Read committed and repeatable read isolation levels.

1 Thread1: tx.begin()
2 Thread1: cache.get(k) returns v
3 Thread2: tx.begin()
4 Thread2: cache.get(k) returns v
5 Thread2: cache.put(k, v2)
6 Thread2: tx.commit()
7 Thread1: cache.get(k)

With REPEATABLE READ, step 7 will still return v, while with

READ COMMITTED step 7 will return v2.

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 51 / 54

Transactions, consistency, locking and isolation (cont.)

Pessimistic and optimistic locking available

Pessimistic locking: resource is locked all the time during the transaction (in

ISPN when resource is changed, read is still possible).

Optimistic locking: state of the resource is saved at the beginning of the

transaction (prepare phase) and other transactions ca access the resource.

During commit phase of the resource is read again and if changed (write

skew), transaction is rolled back.

Isolation - how/when the changes made by one operation become visible
to other. Read committed and repeatable read isolation levels.

1 Thread1: tx.begin()
2 Thread1: cache.get(k) returns v
3 Thread2: tx.begin()
4 Thread2: cache.get(k) returns v
5 Thread2: cache.put(k, v2)
6 Thread2: tx.commit()
7 Thread1: cache.get(k)

With REPEATABLE READ, step 7 will still return v, while with

READ COMMITTED step 7 will return v2.

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 51 / 54

Transactions, consistency, locking and isolation (cont.)

Pessimistic and optimistic locking available

Pessimistic locking: resource is locked all the time during the transaction (in

ISPN when resource is changed, read is still possible).

Optimistic locking: state of the resource is saved at the beginning of the

transaction (prepare phase) and other transactions ca access the resource.

During commit phase of the resource is read again and if changed (write

skew), transaction is rolled back.

Isolation - how/when the changes made by one operation become visible
to other. Read committed and repeatable read isolation levels.

1 Thread1: tx.begin()
2 Thread1: cache.get(k) returns v
3 Thread2: tx.begin()
4 Thread2: cache.get(k) returns v
5 Thread2: cache.put(k, v2)
6 Thread2: tx.commit()
7 Thread1: cache.get(k)

With REPEATABLE READ, step 7 will still return v, while with

READ COMMITTED step 7 will return v2.

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 51 / 54

Transactions, consistency, locking and isolation (cont.)

Pessimistic and optimistic locking available

Pessimistic locking: resource is locked all the time during the transaction (in

ISPN when resource is changed, read is still possible).

Optimistic locking: state of the resource is saved at the beginning of the

transaction (prepare phase) and other transactions ca access the resource.

During commit phase of the resource is read again and if changed (write

skew), transaction is rolled back.

Isolation - how/when the changes made by one operation become visible
to other. Read committed and repeatable read isolation levels.

1 Thread1: tx.begin()
2 Thread1: cache.get(k) returns v
3 Thread2: tx.begin()
4 Thread2: cache.get(k) returns v
5 Thread2: cache.put(k, v2)
6 Thread2: tx.commit()
7 Thread1: cache.get(k)

With REPEATABLE READ, step 7 will still return v, while with

READ COMMITTED step 7 will return v2.

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 51 / 54

Transactions, consistency, locking and isolation (cont.)

Pessimistic and optimistic locking available

Pessimistic locking: resource is locked all the time during the transaction (in

ISPN when resource is changed, read is still possible).

Optimistic locking: state of the resource is saved at the beginning of the

transaction (prepare phase) and other transactions ca access the resource.

During commit phase of the resource is read again and if changed (write

skew), transaction is rolled back.

Isolation - how/when the changes made by one operation become visible
to other. Read committed and repeatable read isolation levels.

1 Thread1: tx.begin()
2 Thread1: cache.get(k) returns v
3 Thread2: tx.begin()
4 Thread2: cache.get(k) returns v
5 Thread2: cache.put(k, v2)
6 Thread2: tx.commit()
7 Thread1: cache.get(k)

With REPEATABLE READ, step 7 will still return v, while with

READ COMMITTED step 7 will return v2.

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 51 / 54

Transactions, consistency, locking and isolation (cont.)

Pessimistic and optimistic locking available

Pessimistic locking: resource is locked all the time during the transaction (in

ISPN when resource is changed, read is still possible).

Optimistic locking: state of the resource is saved at the beginning of the

transaction (prepare phase) and other transactions ca access the resource.

During commit phase of the resource is read again and if changed (write

skew), transaction is rolled back.

Isolation - how/when the changes made by one operation become visible
to other. Read committed and repeatable read isolation levels.

1 Thread1: tx.begin()
2 Thread1: cache.get(k) returns v
3 Thread2: tx.begin()
4 Thread2: cache.get(k) returns v
5 Thread2: cache.put(k, v2)
6 Thread2: tx.commit()
7 Thread1: cache.get(k)

With REPEATABLE READ, step 7 will still return v, while with

READ COMMITTED step 7 will return v2.

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 51 / 54

Transactions, consistency, locking and isolation (cont.)

Pessimistic and optimistic locking available

Pessimistic locking: resource is locked all the time during the transaction (in

ISPN when resource is changed, read is still possible).

Optimistic locking: state of the resource is saved at the beginning of the

transaction (prepare phase) and other transactions ca access the resource.

During commit phase of the resource is read again and if changed (write

skew), transaction is rolled back.

Isolation - how/when the changes made by one operation become visible
to other. Read committed and repeatable read isolation levels.

1 Thread1: tx.begin()
2 Thread1: cache.get(k) returns v
3 Thread2: tx.begin()
4 Thread2: cache.get(k) returns v
5 Thread2: cache.put(k, v2)
6 Thread2: tx.commit()
7 Thread1: cache.get(k)

With REPEATABLE READ, step 7 will still return v, while with

READ COMMITTED step 7 will return v2.

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 51 / 54

Transactions, consistency, locking and isolation (cont.)

Pessimistic and optimistic locking available

Pessimistic locking: resource is locked all the time during the transaction (in

ISPN when resource is changed, read is still possible).

Optimistic locking: state of the resource is saved at the beginning of the

transaction (prepare phase) and other transactions ca access the resource.

During commit phase of the resource is read again and if changed (write

skew), transaction is rolled back.

Isolation - how/when the changes made by one operation become visible
to other. Read committed and repeatable read isolation levels.

1 Thread1: tx.begin()
2 Thread1: cache.get(k) returns v
3 Thread2: tx.begin()
4 Thread2: cache.get(k) returns v
5 Thread2: cache.put(k, v2)
6 Thread2: tx.commit()
7 Thread1: cache.get(k)

With REPEATABLE READ, step 7 will still return v, while with

READ COMMITTED step 7 will return v2.

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 51 / 54

Security

Role based access control

User authentication

Node authentication and authorization

Encryption of communication

Audit logging

Integration with LDAP and/or Kerberos server (includes Active Directory)

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 52 / 54

Features in Infinispan 8

Functional API

Distributed streams

Continuous querying, grouping and aggregation

New management console

Integration with Apache Spark and Hadoop

. . . and more

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 53 / 54

Commercial break: Protocol Buffers

Protocol Buffers (protobuf) are language-neutral, platform-neutral,

extensible mechanism for serializing structured data developed by Google.

Supports C++, C#, Go, Java, Python.

You need to define data structure in protobuf file.

In ISPN you can use also annotations in the your model.

Example of protobuf file:

1 message Address {

2 required string street = 1;

3 required string postCode = 2;

4 }

5

6 message Person {

7 optional int32 id = 1;

8 required string name = 2;

9 required string surname = 3;

10 optional Address address = 4;

11 optional string license = 5;

12 enum Gender {

13 MALE = 0;

14 FEMALE = 1;

15 }

16 }

Vojtěch Juránek (Red Hat) Infinispan 3. 11. 2017, CTU FEE, Prague 54 / 54

https://developers.google.com/protocol-buffers/

