

PV243

Clustering & Scalability

Radoslav Husár
Senior Software Engineer
Red Hat

April 24, 2017

PV243 | Radoslav Husár | twitter.com/radoslavhusar2

Who am I?

Senior Software Engineer
on WildFly/EAP @ Red Hat

● clustering

● scalability

● HA

● failover

● performance

PV243 | Radoslav Husár | twitter.com/radoslavhusar3

Topics

● Clusters

● JGroups

● Infinispan

● Clustering in WildFly 10

● mod_cluster

PV243 | Radoslav Husár | twitter.com/radoslavhusar4

Why cluster?

● Interconnected

● But independent

● Made possible with
● high-speed networking
● and cheap commodity hardware

● Improve performance and/or availability

● Scale to handle higher load

PV243 | Radoslav Husár | twitter.com/radoslavhusar5

WildFly Cluster

● A cluster is a collection of WildFly servers that
communicate with each other so as to improve the
availability of services by providing the following
capabilities:

● High Availability
● Scalability
● Failover
● Fault Tolerance

PV243 | Radoslav Husár | twitter.com/radoslavhusar6

High Availability (HA)

● Capability to support server applications that can be
reliably utilized with a minimum down-time;
a service has a very high probability of being available.

PV243 | Radoslav Husár | twitter.com/radoslavhusar7

Scalability

● Capability to handle a large number of requests by
without service response time degradation;

● a service can handle a large number of requests by
spreading the workload across multiple servers.

PV243 | Radoslav Husár | twitter.com/radoslavhusar8

Failover

● If a service fails, the client can continue processing its
tasks as another cluster member takes over the client's
requests.

PV243 | Radoslav Husár | twitter.com/radoslavhusar9

Fault Tolerance

● Guarantee of correct behavior in the event of a failure.

PV243 | Radoslav Husár | twitter.com/radoslavhusar10

What does Java EE say about clustering?

● Not much.

PV243 | Radoslav Husár | twitter.com/radoslavhusar11

WildFly clustering overview (I)

Replicating server-side state for high-availability

● Distributed HttpSession

● Distributed @Stateful EJB

● Distributed JPA second-level cache

Load balancing for scalability

● Web requests
● mod_cluster

● EJB client requests

PV243 | Radoslav Husár | twitter.com/radoslavhusar12

WildFly clustering overview (II)

Exclusivity services

● Singleton MSC services

● Singleton deployments

● Singleton @MessageDriven EJBs

Advanced use cases

● Group membership

● Group command dispatching

● JGroups as an EE resource

● Infinispan as an EE resource

PV243 | Radoslav Husár | twitter.com/radoslavhusar13

Making Deployments Clustered

● Distributed web sessions

– Add <distributable/> tag to web.xml

– Uses “web” cache container, by default

● Clustered Stateful Session Beans

– Previously annotated @Clustered @Stateful

– Automatically clustered unless
passivationCapable=false

● – Uses “ejb” cache container, by default

PV243 | Radoslav Husár | twitter.com/radoslavhusar14

Distributable HTTP Sessions

All session attributes must be serializable

● Must implement java.io.Serializable

● Most native Java objects implement this functionality

Updating objects which are stored in the session

● Object session attributes always treated as mutable

● Use org.wildfly.clustering.web.annotation.Immutable
to make replication explicit

Ideally, sessions should be kept small

● Less network traffic between the each clustered VM

● Less serialization

PV243 | Radoslav Husár | twitter.com/radoslavhusar15

Distributable SFSB

Distributable by default

● Distributed if supported by server configuration

● Disabled via @Stateful(passivation-capable=false)
(EJB 3.2)

● @Clustered annotation deprecated

● Default configuration REPL → DIST

PV243 | Radoslav Husár | twitter.com/radoslavhusar16

Application Must be Cluster-Aware

● Don't spawn custom services that should be singleton
in the cluster.

● Locking becomes complex
● Don't store data as flat files

● Store in NAS (NFS)
● Use DB
● Use data grid

PV243 | Radoslav Husár | twitter.com/radoslavhusar17

Public clustering API (I)

org.wildfly.clustering.group.Node

● Abstraction for a node’s address

 public interface Node {

 // Logical name of channel

 String getName();

 // Bind address of channel

 InetSocketAddress getSocketAddress();

 }

PV243 | Radoslav Husár | twitter.com/radoslavhusar18

Public clustering API (II)

org.wildfly.clustering.group.Group

● Group membership abstraction

● Membership change listeners

● Exposed as an EE resource

PV243 | Radoslav Husár | twitter.com/radoslavhusar19

Public clustering API (III)

public interface Group {

 interface Listener {

 void membershipChanged(List<Node> previousMembers,
List<Node> members, boolean merged);

}

 void addListener(Listener listener);

 void removeListener(Listener listener);

 String getName();

 boolean isCoordinator();

 Node getLocalNode();

 Node getCoordinator();

 List<Node> getNodes();

 }

PV243 | Radoslav Husár | twitter.com/radoslavhusar20

Public clustering API (IV)

org.wildfly.clustering.dispatcher
● Command<R, C>

● R execute(C context);
● Implemented by user
● Serializable

● CommandResponse<R>
● Encapsulates synchronous response from command execution

● CommandDispatcher<C>
● Contextual group RPC facility, multiplexed per topic
● Execute/submit commands on cluster/node

● CommandDispatcherFactory
● Creates command dispatcher for a given topic, with a given local

context
● Installed per channel
● Exposed as an EE resource

PV243 | Radoslav Husár | twitter.com/radoslavhusar21

Public clustering API (V)

public interface CommandDispatcherFactory {

 <C> CommandDispatcher<C> createCommandDispatcher(Object topicId, C context);

}

public interface CommandDispatcher<C> extends AutoCloseable {

 <R> CommandResponse<R> executeOnNode(Command<R, C> command, Node node) throws
Exception;

 <R> Map<Node, CommandResponse<R>> executeOnCluster(Command<R, C> command, Node...
excluded) throws Exception;

 <R> Future<R> submitOnNode(Command<R, C> command, Node node) throws Exception;

 <R> Map<Node, Future<R>> submitOnCluster(Command<R, C> command, Node...
excludedNodes) throws Exception;

}

PV243 | Radoslav Husár | twitter.com/radoslavhusar22

Example (I)

public class HelloCommand implements Command<String, Node> {

 private static final long serialVersionUID = -3405593925871250676L;

 private final String message;

 public HelloCommand(String message) {

 this.message = message;

}

 @Override

 public String execute(Node localNode) {

 System.out.println(String.format(“Received ‘%s’”, this.message));

 return String.format(“Hello from %s”, localNode.getName());

 }

}

PV243 | Radoslav Husár | twitter.com/radoslavhusar23

Example (II)

@Singleton @Startup
public class HelloWorldBean {
 @Resource(name = “dispatcher/default”)
 private CommandDispatcherFactory factory;
 private CommandDispatcher<Node> dispatcher;
 @PostConstruct
 public void init() {
 this.dispatcher = this.factory.createDispatcher(“hello”, this.factory.getGroup().getLocalNode());
 }
 @PreDestroy
 public void destroy() {
 this.dispatcher.close();
 }
 public void sayHello() throws Exception {
 Node localNode = this.factory.getGroup().getLocalNode();
 String message = String.format(“Hello from %s”, localNode);
 Command<String, Node> command = new HelloCommand(message);
 // Say hello to everyone except myself
 Map<Node, CommandResponse<String>> responses =
this.dispatcher.executeOnCluster(command, localNode);
 responses.values().forEach(response -> System.out.println(response.get()));
 }
 }

PV243 | Radoslav Husár | twitter.com/radoslavhusar24

SingletonService

PV243 | Radoslav Husár | twitter.com/radoslavhusar25

EE6 @Singleton

● Not cluster-wide singleton!

● @Singleton per JVM as spec dictates

PV243 | Radoslav Husár | twitter.com/radoslavhusar26

Clustered 2LC

● JPA/Hibernate 2nd level cache

– Infinispan is default 2nd level cache provider

● persistence.xml no longer needs to define
hibernate.cache.region.factory_class

– Uses “hibernate” cache container by default

– Non-clustering profiles use local-cache

● Provides eviction & expiration support

– “ha” profiles use clustered caches

● invalidation-cache for entities/collections

PV243 | Radoslav Husár | twitter.com/radoslavhusar27

Operational Modes

● Clustering is orthogonal to
● Standalone mode or
● Domain mode

● Clustering in domain “easier” to manage

● (More on next lecture on management!)

PV243 | Radoslav Husár | twitter.com/radoslavhusar28

Changes from AS 4/5/~6

● All clustering services start on demand and stop when
no longer needed

● Lifecycle example
● Deploy app1, starts channel and cache
● Deploy app2
● Undeploy app1
● Undeploy app2, stops cache and channel

● Starting a server with no deployments will not start any
channels/caches

PV243 | Radoslav Husár | twitter.com/radoslavhusar29

Changes from AS 4/5/~6

● Infinispan replaced JBoss Cache as clustering toolkit
and session cache

● Configuration is now centralized.

● No more farm deployment.

● Domains and server groups provide this functionality.

● No HA JNDI (replaced with client JNDI).

PV243 | Radoslav Husár | twitter.com/radoslavhusar30

Extensions for Clustering in WildFly

● org.jboss.as.clustering.jgroups

the JGroups extension, which provides the
communication between between cluster nodes

● org.jboss.as.clustering.infinispan

the Infinispan extension, which provides the replicated
caching functionality

● org.jboss.as.mod_cluster

extension to provide integration and configuration with
mod_cluster software load balancer

PV243 | Radoslav Husár | twitter.com/radoslavhusar31

Predefined Profiles

● Standalone mode
● standalone-ha.xml
● standalone-full-ha.xml

● $./bin/standalone.sh -server-config
standalone/configuration/standalone-
ha.xml

PV243 | Radoslav Husár | twitter.com/radoslavhusar32

Predefined Profiles

● Domain mode

● ha profile

● full-ha profile

● Use “ha” profile from domain.xml
<server-group name="clustered-group" profile="ha">

 <socket-binding-group ref="ha-sockets"/>

</server-group>

● $./bin/domain.sh

JGroups

PV243 | Radoslav Husár | twitter.com/radoslavhusar34

What is not reliable?

● Messages get
● Lost and dropped

● Too big (UDP has a size limit), no fragmentation
● Buffer overflow at the receiver, switch

● NIC, IP network buffer
● Delivered in different order

● We don't know the members of the cluster (multicast)
● No notification when new node joins, leaves, or crashes

● Faster sender might overload slower receiver
● Flow control absence

PV243 | Radoslav Husár | twitter.com/radoslavhusar35

So what Is JGroups ?

● Toolkit for reliable cluster communication

● Provides
● Fragmentation
● Message retransmission
● Flow control
● Ordering
● Group membership, membership change notification

● LAN or WAN based
● IP multicasting transport default for LAN
● TCP transport default for WAN

PV243 | Radoslav Husár | twitter.com/radoslavhusar36

Architecture of JGroups

STATESTATE

COMPRESSCOMPRESS

FLOWFLOW

NAKACKNAKACK

FRAGFRAG

UDPUDP

ChannelChannel

Network

send receive

STATESTATE

COMPRESSCOMPRESS

FLOWFLOW

NAKACKNAKACK

FRAGFRAG

UDPUDP

ChannelChannel

send receive

PV243 | Radoslav Husár | twitter.com/radoslavhusar37

A Message

● src, dest: Address

● Address: identity of a member (of the cluster)

● src: filled in when sending (by JGroups)

● dest: null == send to all members of the group

● buffer: byte[]

● headers: hashmap of headers

● each protocol can add/remove its own headers

● example: sequence number for reliable retransmission

● Message travels across the network

PV243 | Radoslav Husár | twitter.com/radoslavhusar38

Address

● A cluster consists of members
● Each member has its own address
● The address uniquely identifies one member
● Address is an abstract class

● Implemented as a UUID
● UUID is mapped to a physical address

● An address can have a logical name
● For instance “a”
● If not set, JGroups picks the name, e.g. „host-16524”

PV243 | Radoslav Husár | twitter.com/radoslavhusar39

View

● List of members (Addresses)
● Is the same in all members:

● A: {A,B,C}
● B: {A,B,C}
● C: {A,B,C}

● Updated when members join or leave
● All members receive all views in the same order
● Channel.getView() returns the current view

PV243 | Radoslav Husár | twitter.com/radoslavhusar40

API

● Channel: similar to java.net.MulticastSocket
● But with built-in group membership, reliability

● Operations:
● Create a channel with a configuration (program. or xml)
● Connect to a group named "x". Everyone that connects

to "x" will see each other
● Send a message to all members of “x“
● Send a message to a single member
● Receive a message
● Be notified when members join, leave (including

crashes)
● Disconnect from the group
● Close the channel

PV243 | Radoslav Husár | twitter.com/radoslavhusar41

API (Code)
 JChannel ch = new JChannel("udp.xml");

 ch.setReceiver(new ReceiverAdapter() {

 @Override

 public void receive(Message msg) {

 System.out.println("msg from " + msg.getSrc() + ": " + msg.getObject());

 }

 @Override

 public void viewAccepted(View new_view) {

 System.out.println("new view: " + new_view);

 }

 });

 ch.connect("demo-group");

 System.out.println("members are: " + ch.getView().getMembers());

 Message msg = new Message(null, null, "Hello world");

 ch.send(msg);

 ch.close();

PV243 | Radoslav Husár | twitter.com/radoslavhusar42

State transfer

● State is data shared by all nodes in a cluster
● Stock quotes
● HTTP web sessions

● Messages received in the same order will update the
state consistently across a cluster

● To add state transfer to an application, it has to
● Add STATE_TRANSFER to the config
● Implement the state transfer callbacks

● A new joiner needs to acquire state

PV243 | Radoslav Husár | twitter.com/radoslavhusar43

State transfer API

● JChannel.getState() called by state requester

● ReceiverAdapter:
● byte[] getState()

● Called on state provider
● Needs to return serialized state

● void setState(byte[] state)
● Called on state requester
● Needs to set state

PV243 | Radoslav Husár | twitter.com/radoslavhusar44

Group Topology

PV243 | Radoslav Husár | twitter.com/radoslavhusar45

Protocols (1)

● Transport
● UDP (IP Multicast), TCP, TCP_NIE, LOOPBACK

● Member discovery
● PING, TCPPING, TCPGOSSIP, MPING

● Failure detection (freeze up, crash)
● FD, FD_SOCK, VERIFY_SUSPECT, MERGE

● Reliable transmission and Ordering
● Sequence numbers, lost messages are retrasmitted

● Distributed Garbage Collection
● Agreement on all received messages

PV243 | Radoslav Husár | twitter.com/radoslavhusar46

Protocols (2)

● Group Membership
● GMS
● New view on membership change

● Flow control
● FC
● Fast sender does not owerwhelm slow ones

● Fragmentation
● FRAG, FRAG2
● Big messages are transmitted as smaller ones

PV243 | Radoslav Husár | twitter.com/radoslavhusar47

Protocols (3)

● State Transder
● STATE_TRANSFER
● New member receives the state of the group

● Security
● ENCRYPT, AUTH

● Debugging
● PERF, TRACE, STATS

● Simulation and testing
● DELAY, SHUFFLE, LOSS, PARTITIONER

PV243 | Radoslav Husár | twitter.com/radoslavhusar48

JGroups Ergonomics

● Idea: observe the environment and adjust stack
configuration dynamically

● One configuration doesn't rule them all
● Scale from small to large clusters
● Shift from private to public cloud providers
● Account for traffic patterns

Infinispan

PV243 | Radoslav Husár | twitter.com/radoslavhusar50

● Open source data grid platform

● Distributed key/value store

● Transactional (JTA & XA)

● Low-latency (in-memory)

● Java-based (with Scala sprinkles)

● Remote access not only from JVM

● Optionally persisted to disk

● Feature-rich

● Very actively developed

Infinispan

PV243 | Radoslav Husár | twitter.com/radoslavhusar51

Let's look at API first though...

● Map-like key/value store

● JSR-107 Java Temporary Caching API
● javax.cache.Cache interface

● Asynchronous API

● CDI API

● Upcoming JPA-like layer

● Hibernate OGM

PV243 | Radoslav Husár | twitter.com/radoslavhusar52

TRANSACTIONS

● Transactions are optional, designed for from beginning
● TRANSACTIONAL
● NON_TRANSACTIONAL

● Transactional possible locking modes
● OPTIMISTIC
● PESSIMISTIC

● And 2 isolation modes available
● REPEATABLE_READ
● READ_COMMITTED

PV243 | Radoslav Husár | twitter.com/radoslavhusar53

TRANSACTIONS

Cache cache = cacheManager.getCache();

TransactionManager tm =
cache.getAdvancedCache().getTransactionManager();

tm.begin();
cache.put(k1, v1);
cache.remove(k2);
tm.commit();

PV243 | Radoslav Husár | twitter.com/radoslavhusar54

QUERYING

● Based on Hibernate Search

@Indexed
@ProvidedId
public class Event {
 @Field String title;
 @Field String annotation;
 @Field @DateBridge(resolution=Resolution.DAY) Date day;

org.apache.lucene.search.Query luceneQuery = queryBuilder.phrase()
 .onField("title")
 .andField("annotation")
 .sentence("something")
 .createQuery();

CacheQuery query = searchManager.getQuery(luceneQuery,
Event.class);

List<Event> objectList = query.list();

PV243 | Radoslav Husár | twitter.com/radoslavhusar55

DISTRIBUTED EXECUTORS

● Leverage familiar ExecutorService, Callable
abstractions

● Expand it to distributed, parallel computing paradigm

● Looks like a regular ExecutorService

● Feels like a regular ExecutorService

● The “magic“ that goes on Infinispan grid is completely
transparent to users

MAP REDUCE...

PV243 | Radoslav Husár | twitter.com/radoslavhusar56

EXPIRATION

● Specify maximum time entries
● stay in cache (lifespan)
● stay in cache untouched (maxIdle)

● Can set default expiration in cache config

● Can explicitly set lifespan or maxIdle with every PUT

cache.put("Bad smell", "I'll begone in 30 seconds", 30,
TimeUnit.SECONDS);
cache.put("Annoying Girlfriend", "If you don't tell me you
love me every 5 minutes I 'll be gone!", -1,
TimeUnit.SECONDS, 5, TimeUnit.MINUTES);

PV243 | Radoslav Husár | twitter.com/radoslavhusar57

EXPIRATION in AS

● HTTP Sessions expire
● Timeout in web.xml

● SFSB Sessions expire
● @CacheConfig annotation

● Sessions expire so that
● Don't consume resources
● They don't get abused if they are not invalidated

PV243 | Radoslav Husár | twitter.com/radoslavhusar58

EVICTION

● Set maximum # of entries to keep in cache

● Multiple out-of-box eviction strategies
● UNORDERED
● FIFO
● LRU – Least recently used
● LIRS – Low Inter-Reference Recency Set

PV243 | Radoslav Husár | twitter.com/radoslavhusar59

CACHE STORE / PERSISTENCE

● Store data from memory to other kind of storage
● File System (FileCacheStore)

● Relational Database (JdbcBinaryCacheStore,

JdbcStringBasedCacheStore)
● Other NoSQL stores (Cassandra, JClouds BlobStore,

RemoteCacheStore)

● Not only in-memory
● Write-through caching
● Write-behind caching

● Passivation support (spillover to disk)

● Preloading & warm start support
service

PV243 | Radoslav Husár | twitter.com/radoslavhusar60

PASSIVATION IN WILDFLY

<max-active-sessions>
1000

</max-active-sessions>
● Disabled by default

● Controls maximum number of sessions to keep
in memory, rest will be passivated.

PV243 | Radoslav Husár | twitter.com/radoslavhusar61

EVICTION and PERSISTENCE in AS

● Handle too many active sessions

● Passivation - eviction from memory to disk

● A way to be nice to users (keep sessions for longer
time) and not crash the AS (with OOMs)

● Possibly handle restarts/upgrades

PV243 | Radoslav Husár | twitter.com/radoslavhusar62

Embedded Access Mode

PV243 | Radoslav Husár | twitter.com/radoslavhusar63

Cache Modes

PV243 | Radoslav Husár | twitter.com/radoslavhusar64

LOCAL

● Single node

● Non-clustered environment
● Unaware of other instances on network

● Why use LOCAL cache

PV243 | Radoslav Husár | twitter.com/radoslavhusar65

Replication mode

● Each node contains all the entries

● Advantages

● N node cluster tolerates N-1 failures
● Read friendly – we don't need to fetch data from owner node

● Do we need read-friendly in session clustering?
● Instant scale-in, no state transfer on leave

● Disadvantages

● Write unfriendly, put must be to every node
● Doesn't scale
● Upon join all state has to be transfered to new node
● Heap size stays the same when we add nodes

PV243 | Radoslav Husár | twitter.com/radoslavhusar66

REPLICATION

PV243 | Radoslav Husár | twitter.com/radoslavhusar67

DISTRIBUTION

● Advantages
● Scales – number of replications is independent of

cluster size, depends only on number of owners
● Number of owners set to compromise between failure

tolerance and performance
● Virtual heap size = numNodes * heapSize / numOwners

● Disadvantages
● Not every node is an owner of the key, GET may require

network hops
● Node join and leave requires state transfer (rehash)

PV243 | Radoslav Husár | twitter.com/radoslavhusar68

Consistent Hash function

● Even distribution of entries – balanced load

● Less expected rehash on node leave / join

● How usable in clustering?

● Who decides where the session will be stored?

Virtual nodesHash wheel

PV243 | Radoslav Husár | twitter.com/radoslavhusar69

DISTRIBUTION

PV243 | Radoslav Husár | twitter.com/radoslavhusar70

INVALIDATION

● Usable when often read, but rarely written (change entries)

● If entry exists in node's local cache

● it's valid and can be returned to requestor
● If entry doesn't exist in node's local cache

● it's retrieved from the persistent store
● If a node modifies/removes entry it's invalidated in other nodes

● Low cluster traffic, each PUT issues small invalidation message

● When use in clustering?

● Suitable for RDBMS off-loading, used with shared cache
store

PV243 | Radoslav Husár | twitter.com/radoslavhusar71

INVALIDATION

PV243 | Radoslav Husár | twitter.com/radoslavhusar72

SYNC and ASYNC

● Synchronous
● All operations get confirmation that the other relevant

cluster nodes reached the desired state
● Implications to response times
● 2PC

● Asynchronous
● All operations block only until they perform local

changes, we don't wait for JGroups responses.
● Better throughput but no guarantees on data integrity in

cluster.

● When use which?

PV243 | Radoslav Husár | twitter.com/radoslavhusar73

Using Infinispan from AS

● Customizing Infinispan Caches

● JNDI binding

– <cache-container ... jndi-name=”...”>

– Assumes java:global namespace if unqualified

PV243 | Radoslav Husár | twitter.com/radoslavhusar74

Using Directly

● On demand injection of cache container
@ManagedBean

public class CustomBean<K, V> {

 @Resource(lookup = “java:jboss/infinispan/customcontainer”)

 private org.infinispan.manager.CacheContainer container;

 private org.infinispan.Cache<K, V> cache;

 @PostConstruct

 public void start() {

 this.cache = this.container.getCache();

 }

}

Load-balancers & mod_cluster

PV243 | Radoslav Husár | twitter.com/radoslavhusar76

What is mod_cluster?

● Set of modules for Apache HTTPd and Tomcat-
based web servers

● requires Apache HTTPd 2.2.8+
● requires JBoss AS 5.0+ or Tomcat 6+

● Similar to mod_jk and mod_proxy enables HTTPd
to be a load-balancer in front of Java web servers

● JBoss.org LGPL project

PV243 | Radoslav Husár | twitter.com/radoslavhusar77

Architecture

● Client requests proxied to back-end server
● AJP, HTTP, HTTPS protocols
● transparent to request handling on Java side

● Key difference: back channel from back-end to the
front end

● Life-cycle information
● Load-balancing information
● Uses HTTP/HTTPS

PV243 | Radoslav Husár | twitter.com/radoslavhusar78

Architecture (2)

PV243 | Radoslav Husár | twitter.com/radoslavhusar79

Overview of Key Benefits

● Simplified configuration
● Dynamic configuration instead of static
● HTTPd need not be preconfigured with cluster topology
● Little configuration on the HTTPd and web server side

● Improved load-balancing
● Load calculation done on the server side where more

information is available

● Fine grained life-cycle control
● Undeploy a running web app without 404s

PV243 | Radoslav Husár | twitter.com/radoslavhusar80

Dynamic Configuration

● Backend web servers register with HTTPd at
startup

● Backend web server register applications' as they
are available

● No more static topology configuration on the HTTPd

● No workers.properties

● No uriworkermap.properties

● Auto-discovery
● HTTPd servers advertize themselves for web

servers to register with them using UDP multicast
● No topology information

PV243 | Radoslav Husár | twitter.com/radoslavhusar81

No more worker.properties &
uriworkermap.properties

worker.list=lb
worker.lb.type=lb
worker.lb.balance_workers=node1,node2

worker.node1.type=ajp13
worker.node1.host=192.168.2.1
worker.node1.port=8009
worker.node1.lbfactor=1

worker.node2.type=ajp13
worker.node2.host=192.168.2.2
worker.node2.port=8009
worker.node2.lbfactor=1

/webapp/*=loadbalancer
/newwebapp/*=loadbalancer

PV243 | Radoslav Husár | twitter.com/radoslavhusar82

Better Load-balancing

● Problem: load-balancer lacks information needed to
make optimal load-balancing decision

● Knows of: number of requests, sessions, sent/received
bytes, response times

● Ignores: backend server metrics, i.e. CPU usage,
available memory, DB connection pool

● Ignores: activity of other load-balancers
● Solution: backend web servers inform balancer how

much load they can handle
● Factor is a number between 1 to 100
● Relative factors are used to make decisions
● Backend servers have configured set of metrics

PV243 | Radoslav Husár | twitter.com/radoslavhusar83

Load Metrics

● Metric tracked by the backend server to help make
decision

● e.g. available memory, CPU usage
● Multiple readings are combined to overall load factor

● Older readings decline in importance/weight
● Highly configurable

● Weights can be assigned to metrics, e.g. 50% CPU
usage and 50% connection pool usage

● Pluggable custom classes for metrics

PV243 | Radoslav Husár | twitter.com/radoslavhusar84

List of Load Metrics

● Web tier usage:
● active sessions, busy connections, bytes send and

received, request count
● System utilization

● CPU utilization, system memory usage, JVM heap
usage, number of threads

● JCA connection pool usage

● Custom – build your own

PV243 | Radoslav Husár | twitter.com/radoslavhusar85

Rolling Upgrades

● Problem: How to roll an upgrade without downtime?
● Most downtime caused by upgrades, not crashes.
● New release might be binary incompatible and cannot

re-join the cluster.
● Application and session incompatibilities
● Major JBoss AS version upgrades (6.0 to 7.1)
● Component upgrades (Infinispan)
● DB Schema upgrades

● General problem with large flat clusters.
● State transfers, merges, scalability

PV243 | Radoslav Husár | twitter.com/radoslavhusar86

Rolling Upgrades

● Solution: mod_cluster load balancing groups (mod_jk's
domains)

● 20 node cluster == 2 load balancing groups of 10 nodes,
each LB group is a cluster

● Session is replicated to all nodes within the LB group
● In case of crash, failover happens within the LB group

only
● If there are no alive servers in LB group the session is

lost forever and ever

PV243 | Radoslav Husár | twitter.com/radoslavhusar87

Rolling Upgrades

● Upgrade entire domain at once.
● Disable all contexts in the domain (mod_cluster

manager)
● No new sessions are created on disabled nodes.
● Existing sessions are still directed to its' nodes.
● Drain all sessions – all sessions expired in the domain.
● Shutdown and perform an upgrade.
● Start the group (enabled).

PV243 | Radoslav Husár | twitter.com/radoslavhusar88

Installation HTTPd

● HTTPd modules and Java side:

http://www.jboss.org/mod_cluster/downloads/

● Supported platforms
● Linux x86, x64, ia64
● Solaris x86, SPARC
● Windows x86, x64, ia64
● HP-UX PA-RISC, ia64
● build your own from sources

● Distributes will full distribution or just use the modules

● Straightforward migration

http://www.jboss.org/mod_cluster/downloads/

PV243 | Radoslav Husár | twitter.com/radoslavhusar89

HTTPd Configuration

LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_ajp_module modules/mod_proxy_ajp.so
LoadModule slotmem_module modules/mod_slotmem.so
LoadModule manager_module modules/mod_manager.so
LoadModule proxy_cluster_module modules/mod_proxy_cluster.so
LoadModule advertise_module modules/mod_advertise.so

Listen 192.168.1.1:8000

<VirtualHost 192.168.1.1:8000>
 <Directory />
 Order deny,allow
 Deny from all
 Allow from 192.168.2.
 </Directory>

 KeepAliveTimeout 60
 MaxKeepAliveRequests 0
 AdvertiseGroup 224.0.1.105:23364
</VirtualHost>

PV243 | Radoslav Husár | twitter.com/radoslavhusar90

Configuration in EAP 6

 <extensions>
 ...
 <extension module="org.jboss.as.mod_cluster"/>
 ...
 </extensions>
...
 <subsystem xmlns="urn:jboss:domain:modcluster:1.0">
 <mod-cluster-config advertise-socket="modcluster"/>
 </subsystem>
...
 <socket-binding-group name="standard-sockets" ...>
 <socket-binding name="modcluster" port="0" multicast-
address="224.0.1.105" multicast-port="23364"/>
...

● Comes out-of-box in standalone-ha.xml profile.

./bin/standalone.sh -c standalone-
ha.xml

● Or add to your existing profile:

PV243 | Radoslav Husár | twitter.com/radoslavhusar91

mod_cluster Subsystem Operations

● add

● add-custom-metric

● add-metric

● add-proxy

● disable

● disable-context

● enable

● enable-context

● list-proxies

● stop-context

● read-proxies-
configuration

● read-proxies-info

● refresh

● remove

● remove-custom-metric

● remove-metric

● remove-proxy

● reset

● stop

PV243 | Radoslav Husár | twitter.com/radoslavhusar92

Possible Demo

● Deployment
● One HTTPd with mod_cluster
● Two EAP 6 instances
● No static configuration – dynamic auto-discovery

● Scenario
● WAR demo application
● Client GUI to generate load and track load-balancing

PV243 | Radoslav Husár | twitter.com/radoslavhusar93

More questions?

PV243 | Radoslav Husár | twitter.com/radoslavhusar94

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	What is unreliable ?
	So what Is JGroups ?
	Architecture of JGroups
	Slide 37
	Address, IpAddress
	View
	API
	Slide 41
	Slide 42
	Slide 43
	Group topology
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94

