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Who am I?

Senior Software Engineer
on WildFly/EAP @ Red Hat

●  clustering

●  scalability

●  HA

●  failover

●  performance
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Topics

● Clusters

● JGroups

● Infinispan

● Clustering in WildFly 10

● mod_cluster
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Why cluster?

● Interconnected

● But independent

● Made possible with 
● high-speed networking 
● and cheap commodity hardware

● Improve performance and/or availability

● Scale to handle higher load
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WildFly Cluster

● A cluster is a collection of WildFly servers that
communicate with each other so as to improve the
availability of services by providing the following
capabilities:

● High Availability
● Scalability
● Failover
● Fault Tolerance



PV243 | Radoslav Husár | twitter.com/radoslavhusar6

High Availability (HA)

● Capability to support server applications that can be
reliably utilized with a minimum down-time; 
a service has a very high probability of being available.
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Scalability

● Capability to handle a large number of requests by
without service response time degradation;

● a service can handle a large number of requests by
spreading the workload across multiple servers.
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Failover

● If a service fails, the client can continue processing its
tasks as another cluster member takes over the client's
requests.
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Fault Tolerance

● Guarantee of correct behavior in the event of a failure. 
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What does Java EE say about clustering?

● Not much.
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WildFly clustering overview (I)

Replicating server-side state for high-availability

● Distributed HttpSession

● Distributed @Stateful EJB

● Distributed JPA second-level cache

Load balancing for scalability

● Web requests
● mod_cluster

● EJB client requests
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WildFly clustering overview (II)

Exclusivity services

● Singleton MSC services

● Singleton deployments

● Singleton @MessageDriven EJBs

Advanced use cases

● Group membership

● Group command dispatching

● JGroups as an EE resource

● Infinispan as an EE resource
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Making Deployments Clustered

● Distributed web sessions

– Add <distributable/> tag to web.xml

– Uses “web” cache container, by default

● Clustered Stateful Session Beans

– Previously annotated @Clustered @Stateful

– Automatically clustered unless
passivationCapable=false

● – Uses “ejb” cache container, by default
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Distributable HTTP Sessions

All session attributes must be serializable 

● Must implement java.io.Serializable

● Most native Java objects implement this functionality

Updating objects which are stored in the session 

● Object session attributes always treated as mutable

● Use org.wildfly.clustering.web.annotation.Immutable 
to make replication explicit

Ideally, sessions should be kept small

● Less network traffic between the each clustered VM

● Less serialization  
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Distributable SFSB

Distributable by default

● Distributed if supported by server configuration

● Disabled via @Stateful(passivation-capable=false) 
(EJB 3.2)

● @Clustered annotation deprecated

● Default configuration REPL → DIST 
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Application Must be Cluster-Aware

● Don't spawn custom services that should be singleton
in the cluster.

● Locking becomes complex
● Don't store data as flat files

● Store in NAS (NFS)
● Use DB
● Use data grid
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Public clustering API (I)

org.wildfly.clustering.group.Node 

● Abstraction for a node’s address

      public interface Node {

            // Logical name of channel

            String getName();

            // Bind address of channel

            InetSocketAddress getSocketAddress();

      }
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Public clustering API (II)

org.wildfly.clustering.group.Group

● Group membership abstraction

● Membership change listeners

● Exposed as an EE resource
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Public clustering API (III)

public interface Group {

          interface Listener {

              void membershipChanged(List<Node> previousMembers,
List<Node> members, boolean merged);

}

          void addListener(Listener listener);

          void removeListener(Listener listener);

          String getName();

          boolean isCoordinator();

          Node getLocalNode();

          Node getCoordinator();

          List<Node> getNodes();

      }
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Public clustering API (IV)

org.wildfly.clustering.dispatcher 
● Command<R, C>

● R execute(C context);
● Implemented by user
● Serializable

● CommandResponse<R>
● Encapsulates synchronous response from command execution

● CommandDispatcher<C>
● Contextual group RPC facility, multiplexed per topic
● Execute/submit commands on cluster/node

● CommandDispatcherFactory
● Creates command dispatcher for a given topic, with a given local

context
● Installed per channel
● Exposed as an EE resource 
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Public clustering API (V)

public interface CommandDispatcherFactory {

    <C> CommandDispatcher<C> createCommandDispatcher(Object topicId, C context);

}

public interface CommandDispatcher<C> extends AutoCloseable {

    <R> CommandResponse<R> executeOnNode(Command<R, C> command, Node node) throws
Exception;

    <R> Map<Node, CommandResponse<R>> executeOnCluster(Command<R, C> command, Node...
excluded) throws Exception;

    <R> Future<R> submitOnNode(Command<R, C> command, Node node) throws Exception;

    <R> Map<Node, Future<R>> submitOnCluster(Command<R, C> command, Node...
excludedNodes) throws Exception;

}
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Example (I)

public class HelloCommand implements Command<String, Node> {

    private static final long serialVersionUID = -3405593925871250676L;

    private final String message;

    public HelloCommand(String message) {

        this.message = message;

}

    @Override

    public String execute(Node localNode) {

        System.out.println(String.format(“Received ‘%s’”, this.message));

        return String.format(“Hello from %s”, localNode.getName());

    }

}
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Example (II)

@Singleton @Startup
public class HelloWorldBean {
    @Resource(name = “dispatcher/default”)
    private CommandDispatcherFactory factory;
    private CommandDispatcher<Node> dispatcher;
    @PostConstruct
    public void init() {
        this.dispatcher = this.factory.createDispatcher(“hello”, this.factory.getGroup().getLocalNode());
    }
    @PreDestroy
    public void destroy() {
        this.dispatcher.close();
    }
    public void sayHello() throws Exception {
        Node localNode = this.factory.getGroup().getLocalNode();
        String message = String.format(“Hello from %s”, localNode);
        Command<String, Node> command = new HelloCommand(message);
        // Say hello to everyone except myself
        Map<Node, CommandResponse<String>> responses =
this.dispatcher.executeOnCluster(command, localNode);
        responses.values().forEach(response -> System.out.println(response.get()));
    }
 }
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SingletonService
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EE6 @Singleton

● Not cluster-wide singleton!

● @Singleton per JVM as spec dictates
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Clustered 2LC

● JPA/Hibernate 2nd level cache

– Infinispan is default 2nd level cache provider

● persistence.xml no longer needs to define
hibernate.cache.region.factory_class

– Uses “hibernate” cache container by default

– Non-clustering profiles use local-cache

● Provides eviction & expiration support

– “ha” profiles use clustered caches

● invalidation-cache for entities/collections
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Operational Modes

● Clustering is orthogonal to
● Standalone mode or
● Domain mode

● Clustering in domain “easier” to manage

● (More on next lecture on management!)
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Changes from AS 4/5/~6

● All clustering services start on demand and stop when
no longer needed

● Lifecycle example
● Deploy app1, starts channel and cache
● Deploy app2
● Undeploy app1
● Undeploy app2, stops cache and channel

● Starting a server with no deployments will not start any
channels/caches
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Changes from AS 4/5/~6

● Infinispan replaced JBoss Cache as clustering toolkit
and session cache

● Configuration is now centralized.

● No more farm deployment.

● Domains and server groups provide this functionality.

● No HA JNDI (replaced with client JNDI). 
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Extensions for Clustering in WildFly

● org.jboss.as.clustering.jgroups

the JGroups extension, which provides the
communication between between cluster nodes

● org.jboss.as.clustering.infinispan

the Infinispan extension, which provides the replicated
caching functionality

● org.jboss.as.mod_cluster

extension to provide integration and configuration with
mod_cluster software load balancer
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Predefined Profiles

● Standalone mode
● standalone-ha.xml 
● standalone-full-ha.xml

● $ ./bin/standalone.sh -server-config
standalone/configuration/standalone-
ha.xml
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Predefined Profiles

● Domain mode

● ha profile

● full-ha profile

● Use “ha” profile from domain.xml
<server-group name="clustered-group" profile="ha">

     <socket-binding-group ref="ha-sockets"/>

</server-group>

● $ ./bin/domain.sh



  

JGroups
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What is not reliable?

● Messages get 
● Lost and dropped

● Too big (UDP has a size limit), no fragmentation
● Buffer overflow at the receiver, switch

● NIC, IP network buffer
● Delivered in different order

● We don't know the members of the cluster (multicast)
● No notification when new node joins, leaves, or crashes

● Faster sender might overload slower receiver
● Flow control absence



PV243 | Radoslav Husár | twitter.com/radoslavhusar35

So what Is JGroups ?

● Toolkit for reliable cluster communication

● Provides
● Fragmentation
● Message retransmission
● Flow control
● Ordering
● Group membership, membership change notification

● LAN or WAN based
● IP multicasting transport default for LAN
● TCP transport default for WAN
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Architecture of JGroups

STATESTATE

COMPRESSCOMPRESS

FLOWFLOW

NAKACKNAKACK

FRAGFRAG

UDPUDP

ChannelChannel

Network

send receive

STATESTATE

COMPRESSCOMPRESS

FLOWFLOW

NAKACKNAKACK

FRAGFRAG

UDPUDP

ChannelChannel

send receive



PV243 | Radoslav Husár | twitter.com/radoslavhusar37

A Message

● src, dest: Address

● Address: identity of a member (of the cluster)

● src: filled in when sending (by JGroups)

● dest: null == send to all members of the group

● buffer: byte[]

● headers: hashmap of headers

● each protocol can add/remove its own headers

● example: sequence number for reliable retransmission

● Message travels across the network
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Address

● A cluster consists of members
● Each member has its own address
● The address uniquely identifies one member
● Address is an abstract class

● Implemented as a UUID
● UUID is mapped to a physical address

● An address can have a logical name
● For instance “a”
● If not set, JGroups picks the name, e.g. „host-16524”
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View

● List of members (Addresses)
● Is the same in all members:

● A: {A,B,C}
● B: {A,B,C}
● C: {A,B,C}

● Updated when members join or leave
● All members receive all views in the same order
● Channel.getView() returns the current view
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API

● Channel: similar to java.net.MulticastSocket
● But with built-in group membership, reliability

● Operations:
● Create a channel with a configuration (program. or xml)
● Connect to a group named "x". Everyone that connects

to "x" will see each other
● Send a message to all members of “x“
● Send a message to a single member
● Receive a message
● Be notified when members join, leave (including

crashes)
● Disconnect from the group
● Close the channel
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API (Code)
      JChannel ch = new JChannel("udp.xml");

      ch.setReceiver(new ReceiverAdapter() {

         @Override

         public void receive(Message msg) {

            System.out.println("msg from " + msg.getSrc() + ": " + msg.getObject());

         }

         @Override

         public void viewAccepted(View new_view) {

            System.out.println("new view: " + new_view);

         }

      });

      ch.connect("demo-group");

      System.out.println("members are: " + ch.getView().getMembers());

      Message msg = new Message(null, null, "Hello world");

      ch.send(msg);

      ch.close();
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State transfer

● State is data shared by all nodes in a cluster
● Stock quotes
● HTTP web sessions

● Messages received in the same order will update the
state consistently across a cluster

● To add state transfer to an application, it has to
● Add STATE_TRANSFER to the config
● Implement the state transfer callbacks

● A new joiner needs to acquire state
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State transfer API

● JChannel.getState() called by state requester

● ReceiverAdapter:
● byte[] getState()

● Called on state provider
● Needs to return serialized state

● void setState(byte[] state)
● Called on state requester
● Needs to set state
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Group Topology
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Protocols (1)

● Transport
● UDP (IP Multicast), TCP, TCP_NIE, LOOPBACK

● Member discovery
● PING, TCPPING, TCPGOSSIP, MPING

● Failure detection (freeze up, crash)
● FD, FD_SOCK, VERIFY_SUSPECT, MERGE

● Reliable transmission and Ordering
● Sequence numbers, lost messages are retrasmitted

● Distributed Garbage Collection
● Agreement on all received messages
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Protocols (2)

● Group Membership
● GMS 
● New view on membership change

● Flow control 
● FC
● Fast sender does not owerwhelm slow ones

● Fragmentation 
● FRAG, FRAG2
● Big messages are transmitted as smaller ones
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Protocols (3)

● State Transder
● STATE_TRANSFER
● New member receives the state of the group

● Security
● ENCRYPT, AUTH

● Debugging
● PERF, TRACE, STATS

● Simulation and testing
● DELAY, SHUFFLE, LOSS, PARTITIONER
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JGroups Ergonomics

● Idea: observe the environment and adjust stack
configuration dynamically

● One configuration doesn't rule them all
● Scale from small to large clusters
● Shift from private to public cloud providers
● Account for traffic patterns



  

Infinispan
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● Open source data grid platform

● Distributed key/value store

● Transactional (JTA & XA)

● Low-latency (in-memory)

● Java-based (with Scala sprinkles)

● Remote access not only from JVM

● Optionally persisted to disk

● Feature-rich

● Very actively developed

Infinispan
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Let's look at API first though...

● Map-like key/value store

● JSR-107 Java Temporary Caching API
● javax.cache.Cache interface

● Asynchronous API

● CDI API

● Upcoming JPA-like layer

● Hibernate OGM
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TRANSACTIONS

● Transactions are optional, designed for from beginning
● TRANSACTIONAL
● NON_TRANSACTIONAL

● Transactional possible locking modes
● OPTIMISTIC
● PESSIMISTIC

● And 2 isolation modes available
● REPEATABLE_READ
● READ_COMMITTED
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TRANSACTIONS

Cache cache = cacheManager.getCache();
  
TransactionManager tm =
cache.getAdvancedCache().getTransactionManager();

tm.begin();
cache.put(k1, v1);
cache.remove(k2);
tm.commit();
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QUERYING

● Based on Hibernate Search

@Indexed 
@ProvidedId
public class Event {
      @Field String title;
      @Field String annotation;
      @Field @DateBridge(resolution=Resolution.DAY) Date day;
      ....

org.apache.lucene.search.Query luceneQuery = queryBuilder.phrase()
                                    .onField( "title" )
                                    .andField( "annotation" )
                                    .sentence( "something" )
                                    .createQuery();
  
CacheQuery query = searchManager.getQuery( luceneQuery,
Event.class );
  
List<Event> objectList = query.list();
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DISTRIBUTED EXECUTORS

● Leverage familiar ExecutorService, Callable
abstractions

● Expand it to distributed, parallel computing paradigm

● Looks like a regular ExecutorService

● Feels like a regular ExecutorService

● The “magic“ that goes on Infinispan grid is completely
transparent to users

MAP REDUCE...
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EXPIRATION

● Specify maximum time entries
● stay in cache (lifespan)
● stay in cache untouched (maxIdle)

● Can set default expiration in cache config

● Can explicitly set lifespan or maxIdle with every PUT

cache.put("Bad smell", "I'll begone in 30 seconds", 30,
TimeUnit.SECONDS);
cache.put("Annoying Girlfriend", "If you don't tell me you
love me every 5 minutes I 'll be gone!", -1,
TimeUnit.SECONDS, 5, TimeUnit.MINUTES);
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EXPIRATION in AS

● HTTP Sessions expire 
● Timeout in web.xml

● SFSB Sessions expire
● @CacheConfig annotation

● Sessions expire so that
● Don't consume resources
● They don't get abused if they are not invalidated
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EVICTION

● Set maximum # of entries to keep in cache

● Multiple out-of-box eviction strategies
● UNORDERED
● FIFO
● LRU – Least recently used
● LIRS – Low Inter-Reference Recency Set
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CACHE STORE / PERSISTENCE

● Store data from memory to other kind of storage
● File System (FileCacheStore)

● Relational Database (JdbcBinaryCacheStore,

JdbcStringBasedCacheStore) 
● Other NoSQL stores (Cassandra, JClouds BlobStore,

RemoteCacheStore)

● Not only in-memory
● Write-through caching
● Write-behind caching

● Passivation support (spillover to disk)

● Preloading & warm start support
service
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PASSIVATION IN WILDFLY 

<max-active-sessions>
1000

</max-active-sessions>
● Disabled by default

● Controls maximum number of sessions to keep
in memory, rest will be passivated.
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EVICTION and PERSISTENCE in AS

● Handle too many active sessions

● Passivation - eviction from memory to disk

● A way to be nice to users (keep sessions for longer
time) and not crash the AS (with OOMs)

● Possibly handle restarts/upgrades
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Embedded Access Mode
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Cache Modes
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LOCAL

● Single node

● Non-clustered environment
● Unaware of other instances on network

● Why use LOCAL cache



PV243 | Radoslav Husár | twitter.com/radoslavhusar65

Replication mode

● Each node contains all the entries

● Advantages

● N node cluster tolerates N-1 failures
● Read friendly – we don't need to fetch data from owner node

● Do we need read-friendly in session clustering?
● Instant scale-in, no state transfer on leave

● Disadvantages

● Write unfriendly, put must be to every node
● Doesn't scale
● Upon join all state has to be transfered to new node
● Heap size stays the same when we add nodes
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REPLICATION
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DISTRIBUTION

● Advantages
● Scales – number of replications is independent of

cluster size, depends only on number of owners
● Number of owners set to compromise between failure

tolerance and performance
● Virtual heap size = numNodes * heapSize / numOwners

● Disadvantages
● Not every node is an owner of the key, GET may require

network hops
● Node join and leave requires state transfer (rehash)
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Consistent Hash function

● Even distribution of entries – balanced load

● Less expected rehash on node leave / join

● How usable in clustering? 

● Who decides where the session will be stored?

Virtual nodesHash wheel
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DISTRIBUTION
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INVALIDATION

● Usable when often read, but rarely written (change entries)

● If entry exists in node's local cache

● it's valid and can be returned to requestor
● If entry doesn't exist in node's local cache

● it's retrieved from the persistent store
● If a node modifies/removes entry it's invalidated in other nodes

● Low cluster traffic, each PUT issues small invalidation message

● When use in clustering?

● Suitable for RDBMS off-loading, used with shared cache
store
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INVALIDATION
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SYNC and ASYNC

● Synchronous
● All operations get confirmation that the other relevant

cluster nodes reached the desired state
● Implications to response times
● 2PC

● Asynchronous
● All operations block only until they perform local

changes, we don't wait for JGroups responses.
● Better throughput but no guarantees on data integrity in

cluster.

● When use which?
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Using Infinispan from AS

● Customizing Infinispan Caches

● JNDI binding

– <cache-container ... jndi-name=”...”>

– Assumes java:global namespace if unqualified
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Using Directly

● On demand injection of cache container
@ManagedBean

public class CustomBean<K, V> {

    @Resource(lookup = “java:jboss/infinispan/customcontainer”)

    private org.infinispan.manager.CacheContainer container;

    private org.infinispan.Cache<K, V> cache;

    @PostConstruct

    public void start() {

        this.cache = this.container.getCache();

    }

}



  

Load-balancers & mod_cluster
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What is mod_cluster?

● Set of modules for Apache HTTPd and Tomcat-
based web servers

● requires Apache HTTPd 2.2.8+
● requires JBoss AS 5.0+ or Tomcat 6+

● Similar to mod_jk and mod_proxy enables HTTPd
to be a load-balancer in front of Java web servers

● JBoss.org LGPL project
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Architecture

● Client requests proxied to back-end server
● AJP, HTTP, HTTPS protocols
● transparent to request handling on Java side

● Key difference: back channel from back-end to the
front end

● Life-cycle information
● Load-balancing information
● Uses HTTP/HTTPS
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Architecture (2)
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Overview of Key Benefits

● Simplified configuration
● Dynamic configuration instead of static
● HTTPd need not be preconfigured with cluster topology
● Little configuration on the HTTPd and web server side

● Improved load-balancing
● Load calculation done on the server side where more

information is available

● Fine grained life-cycle control
● Undeploy a running web app without 404s
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Dynamic Configuration

● Backend web servers register with HTTPd at
startup

● Backend web server register applications' as they
are available

● No more static topology configuration on the HTTPd

● No workers.properties

● No uriworkermap.properties

● Auto-discovery
● HTTPd servers advertize themselves for web

servers to register with them using UDP multicast
● No topology information
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No more worker.properties &
uriworkermap.properties

worker.list=lb
worker.lb.type=lb
worker.lb.balance_workers=node1,node2

worker.node1.type=ajp13
worker.node1.host=192.168.2.1
worker.node1.port=8009
worker.node1.lbfactor=1

worker.node2.type=ajp13
worker.node2.host=192.168.2.2
worker.node2.port=8009
worker.node2.lbfactor=1

/webapp/*=loadbalancer
/newwebapp/*=loadbalancer
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Better Load-balancing

● Problem: load-balancer lacks information needed to
make optimal load-balancing decision

● Knows of: number of requests, sessions, sent/received
bytes, response times

● Ignores: backend server metrics, i.e. CPU usage,
available memory, DB connection pool

● Ignores: activity of other load-balancers
● Solution: backend web servers inform balancer how

much load they can handle
● Factor is a number between 1 to 100
● Relative factors are used to make decisions
● Backend servers have configured set of metrics
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Load Metrics

● Metric tracked by the backend server to help make
decision

● e.g. available memory, CPU usage
● Multiple readings are combined to overall load factor

● Older readings decline in importance/weight
● Highly configurable

● Weights can be assigned to metrics, e.g. 50% CPU
usage and 50% connection pool usage

● Pluggable custom classes for metrics
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List of Load Metrics

● Web tier usage:
● active sessions, busy connections, bytes send and

received, request count
● System utilization

● CPU utilization, system memory usage, JVM heap
usage, number of threads

● JCA connection pool usage

● Custom – build your own
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Rolling Upgrades

● Problem: How to roll an upgrade without downtime? 
● Most downtime caused by upgrades, not crashes.
● New release might be binary incompatible and cannot

re-join the cluster.
● Application and session incompatibilities
● Major JBoss AS version upgrades (6.0 to 7.1)
● Component upgrades (Infinispan)
● DB Schema upgrades

● General problem with large flat clusters.
● State transfers, merges, scalability
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Rolling Upgrades

● Solution: mod_cluster load balancing groups (mod_jk's
domains)

● 20 node cluster == 2 load balancing groups of 10 nodes,
each LB group is a cluster

● Session is replicated to all nodes within the LB group
● In case of crash, failover happens within the LB group

only
● If there are no alive servers in LB group the session is

lost forever and ever
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Rolling Upgrades

● Upgrade entire domain at once.
● Disable all contexts in the domain (mod_cluster

manager)
● No new sessions are created on disabled nodes.
● Existing sessions are still directed to its' nodes.
● Drain all sessions – all sessions expired in the domain.
● Shutdown and perform an upgrade.
● Start the group (enabled).
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Installation HTTPd

● HTTPd modules and Java side:

http://www.jboss.org/mod_cluster/downloads/

● Supported platforms
● Linux x86, x64, ia64
● Solaris x86, SPARC
● Windows x86, x64, ia64
● HP-UX PA-RISC, ia64
● build your own from sources

● Distributes will full distribution or just use the modules

● Straightforward migration

http://www.jboss.org/mod_cluster/downloads/
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HTTPd Configuration

LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_ajp_module modules/mod_proxy_ajp.so
LoadModule slotmem_module modules/mod_slotmem.so
LoadModule manager_module modules/mod_manager.so
LoadModule proxy_cluster_module modules/mod_proxy_cluster.so
LoadModule advertise_module modules/mod_advertise.so

Listen 192.168.1.1:8000

<VirtualHost 192.168.1.1:8000>
    <Directory />
        Order deny,allow
        Deny from all
        Allow from 192.168.2.
    </Directory>

    KeepAliveTimeout 60
    MaxKeepAliveRequests 0
    AdvertiseGroup 224.0.1.105:23364
</VirtualHost>
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Configuration in EAP 6

    <extensions>
        ...
        <extension module="org.jboss.as.mod_cluster"/>
        ...
    </extensions>
...
    <subsystem xmlns="urn:jboss:domain:modcluster:1.0">
        <mod-cluster-config advertise-socket="modcluster"/>
    </subsystem>
...
    <socket-binding-group name="standard-sockets" ...>
        <socket-binding name="modcluster" port="0" multicast-
address="224.0.1.105" multicast-port="23364"/>
...

● Comes out-of-box in standalone-ha.xml profile.

./bin/standalone.sh -c standalone-
ha.xml

● Or add to your existing profile:
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mod_cluster Subsystem Operations

● add                          

● add-custom-metric   

● add-metric                   

● add-proxy                    

● disable

● disable-context              

● enable                       

● enable-context               

● list-proxies

● stop-context       

● read-proxies-
configuration   

● read-proxies-info            

● refresh

● remove                       

● remove-custom-metric

● remove-metric                

● remove-proxy                 

● reset

● stop                        
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Possible Demo

● Deployment
● One HTTPd with mod_cluster
● Two EAP 6 instances
● No static configuration – dynamic auto-discovery

● Scenario
● WAR demo application
● Client GUI to generate load and track load-balancing
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More questions?
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Thank you!
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