
Java Enterprise Edition Security Explained
FI MUNI, Brno 2017

JBoss by Red Hat

Peter Škopek, pskopek@redhat.com, twitter: @pskopek

May 22, 2017

Abstract

This lecture will guide you through various aspects of security
in Java Enterprise Edition Applications. It will start with plain
JAAS and continue with Java EE security concepts and
explanation of their usage in your application. Next comes
JAAS and its usage in WildFly 10. Then we will finish with
login modules in WildFly.

Agenda

1 Java Authentication and Authorization Service
Overview
JAAS - putting it all together

2 Java EE Security
Overview
Simple Example
Java EE Security Architecture
Servlet Container Security
EJB Container Security
EE and Java Security Manager

3 JBoss Specific
Annotations
LoginModules

Section 1
Java Authentication and
Authorization Service

Java Authentication and Authorization Service Overview

What is that?

The Java Authentication and Authorization Service (JAAS) was
introduced as an optional package (extension) to the Java 2 SDK,
Standard Edition (J2SDK), v 1.3. JAAS was integrated into the
J2SDK 1.4.
JAAS can be used for two purposes:

for authentication of users, to reliably and securely determine
who is currently executing Java code, regardless of whether
the code is running as an application, an applet, a bean, or a
servlet

for authorization of users to ensure they have the access
control rights (permissions) required to do the actions
performed

Java Authentication and Authorization Service Overview

JAAS as PAM

JAAS implements a Java version of the standard Pluggable
Authentication Module (PAM) framework as we know it from
UNIX environment.
This permits applications to remain independent from
underlying authentication technologies. New or updated
authentication technologies can be plugged under an
application without requiring modifications to the application
itself.
Applications enable the authentication process by
instantiating a LoginContext object, which in turn references
a Configuration to determine the authentication
technology(ies), or LoginModule(s), to be used in performing
the authentication.
Typical LoginModules may prompt for and verify a username
and password. Others may read and verify a voice or
fingerprint sample.

Java Authentication and Authorization Service Overview

Common Classes

Common classes are those shared by both the JAAS authentication
and authorization components.

javax.security.auth.Subject

the key JAAS class
the term subject to represent the source of a request.
A subject may be any entity, such as a person or a service.
Once the subject is authenticated, a Subject object is
populated with associated identities (Principals).
A Subject may also own security-related attributes, which are
referred to as credentials (public and private).

Java Authentication and Authorization Service Overview

Common Interfaces

Principals

Must implement java.security.Principal interface.

Credentials

Public and private credential classes are not part of the core
JAAS class library.
Any class can represent a credential.
Developers, however, may elect to have their credential classes
implement two interfaces related to credentials:
javax.security.auth.Refreshable and
javax.security.auth.Destroyable.

Java Authentication and Authorization Service Overview

Authentication Classes and Interfaces

javax.security.auth.login.LoginContext

The class provides the basic methods used to authenticate
subjects, and provides a way to develop an application
independent of the underlying authentication technology.
The LoginContext consults a Configuration to determine the
authentication services, or LoginModule(s), configured for a
particular application. Therefore, different LoginModules can
be plugged in under an application without requiring any
modifications to the application itself.

javax.security.auth.spi.LoginModule

The LoginModule interface gives developers the ability to
implement different kinds of authentication technologies that
can be plugged in under an application.
For example, one type of LoginModule may perform a
username/password-based form of authentication. Other
LoginModules may interface to hardware devices such as smart
cards or biometric devices.

Java Authentication and Authorization Service Overview

Authentication Classes and Interfaces

javax.security.auth.callback.CallbackHandler

In some cases a LoginModule must communicate with the user
to obtain authentication information. LoginModules use a
CallbackHandler for this purpose.
Applications implement the CallbackHandler interface and pass
it to the LoginContext, which forwards it directly to the
underlying LoginModules.

javax.security.auth.callback.Callback

The javax.security.auth.callback package contains the Callback
interface as well as several implementations.
LoginModules may pass an array of Callbacks directly to the
handle method of a CallbackHandler (in their login() method).

Java Authentication and Authorization Service Overview

Authorization Classes

java.security.Policy

javax.security.auth.AuthPermission

javax.security.auth.PrivateCredentialPermission

Java Authentication and Authorization Service JAAS - putting it all together

Basic work flow

LoginContext instance takes two arguments:

configuration name - simple string denoting name of
configuration used to initialize login context
callback handler object

Call to LoginContext method login() which performs actual
authentication / authorization according to configuration
passed to the LoginContext and LoginModule(s) in our config
file.

After successful login, LoginContext is populated with Subject
and it contains Principal(s) and Credential(s).

LoginContext logout() method for obvious reasons.

Java Authentication and Authorization Service JAAS - putting it all together

LoginContext configuration

A login configuration contains the following information. Note that
this example only represents the default syntax for the
configuration file. There is possibility to create a subclass of the
implementations class with alternative syntax and may retrieve the
configuration from any source such as files, databases, or servers.

Name1 {

ModuleClass Flag ModuleOptions;

ModuleClass Flag ModuleOptions;

ModuleClass Flag ModuleOptions;

};

Name2 {

ModuleClass Flag ModuleOptions;

ModuleClass Flag ModuleOptions;

};

other {

ModuleClass Flag ModuleOptions;

ModuleClass Flag ModuleOptions;

};

Java Authentication and Authorization Service JAAS - putting it all together

LoginModule stack configuration

The Flag value controls the overall behavior as authentication
proceeds down the stack.

1 Required - The LoginModule is required to succeed.
If it succeeds or fails, authentication still continues to proceed
down the LoginModule list.

2 Requisite - The LoginModule is required to succeed.
If it succeeds, authentication continues down the
LoginModule list.
If it fails, control immediately returns to the application
(authentication does not proceed down the LoginModule list).

Java Authentication and Authorization Service JAAS - putting it all together

LoginModule stack configuration

The Flag value controls the overall behavior as authentication
proceeds down the stack.

3 Sufficient - The LoginModule is not required to succeed.
If it does succeed, control immediately returns to the
application (authentication does not proceed down the
LoginModule list).
If it fails, authentication continues down the LoginModule list.

4 Optional - The LoginModule is not required to succeed.
If it succeeds or fails, authentication still continues to proceed
down the LoginModule list.

Section 2
Java EE Security

Java EE Security Overview

Security Definition

What are the aspects of secure applications?

Authentication - The means by which communicating entities
(for example, client and server) prove to one another that they
are acting on behalf of specific identities that are authorized
for access.
Access control for resources - The means by which interactions
with resources are limited to collections of users or programs
for the purpose of enforcing integrity, confidentiality, or
availability constraints.
Data integrity - The means used to prove that information has
not been modified by a third party (some entity other than the
source of the information). For example, a recipient of data
sent over an open network must be able to detect and discard
messages that were modified after they were sent.

Java EE Security Overview

Security Definition

Another security aspects of good application.

Confidentiality - The means used to ensure that information is
made available only to users who are authorized to access it.
Non-repudiation - The means used to prove that a user
performed some action such that the user cannot reasonably
deny having done so.
Auditing - The means used to capture a tamper-resistant
record of security related events for the purpose of being able
to evaluate the effectiveness of security policies and
mechanisms.

Java EE Security Simple Example

Step 1: Initial Request

The web client requests the main application URL.

Java EE Security Simple Example

Step 2: Initial Authentication

The web server returns a form that the web client uses to collect
authentication data (for example, username and password) from
the user. The web client forwards the authentication data to the
web server, where it is validated by the web server.

Java EE Security Simple Example

Step 3: URL Authorization

The web container then tests the user’s credential against each
role to determine if it can map the user to the role.

Java EE Security Simple Example

Step 4: Fulfilling the Original Request

If the user is authorized, the web server returns the result of the
original URL request.

Java EE Security Simple Example

Step 5: Invoking Enterprise Bean Business
Methods

The servlet performs the remote method call to the enterprise
bean, using the user’s credential to establish a secure association
between the servlet and the enterprise bean. The association is
implemented as two related security contexts, one in the web
server and one in the EJB container.

Java EE Security Java EE Security Architecture

Selected Goals of Java EE Security
Architecture

Transparency: Application Component Providers should not
have to know anything about security to write an application.

Isolation: Divorcing the application from responsibility for
security ensures greater portability of Java EE applications.

Flexibility: The security mechanisms and declarations used by
applications under this specification should not impose a
particular security policy, but facilitate the implementation of
security policies specific to the particular Java EE installation
or application.

Abstraction: An application component’s security
requirements will be logically specified using deployment
descriptors.

Java EE Security Java EE Security Architecture

Selected Goals of Java EE Security
Architecture

Independence: Required security behaviors and deployment
contracts should be implementable using a variety of popular
security technologies.

Secure interoperability: Application components executing in
a Java EE product must be able to invoke services provided in
a Java EE product from a different vendor.

Java EE Security Java EE Security Architecture

Terminology

Principal - is an entity that can be authenticated by an
authentication protocol in a security service that is deployed in
an enterprise.

Security Policy Domain - is a scope over which a common
security policy is defined and enforced by the security
administrator of the security service (also known as security
domain).

Security Attributes - a set of security attributes is associated
with every principal.

Credential - contains or references information (security
attributes) used to authenticate a principal for Java EE
product services.

Java EE Security Java EE Security Architecture

Container Based Security

Security for components is provided by their containers in order to
achieve the goals for security specified above in a Java EE
environment. A container provides two kinds of security:

Declarative security

Declarative security refers to the means of expressing an
application’s security model or requirements, including roles,
access control, and authentication requirements in a form
external to the application. The deployment descriptor is the
primary vehicle for declarative security in web applications.

Programmatic security

Programmatic security is used by security aware applications
when declarative security alone is not sufficient to express the
security model of the application.

Java EE Security Servlet Container Security

Programmatic Security

Programmatic security consists of the following methods of the
HttpServletRequest interface:

authenticate

login

logout

getRemoteUser

isUserInRole

getUserPrincipal

Java EE Security Servlet Container Security

Declarative Security

Following annotations are part of Servlet 3.0 specification and
provide alternative to defining access control via declarative
deployment descriptor.

@ServletSecurity

@HttpConstraint - The annotation is used within the
@ServletSecurity annotation to represent the security
constraint to be applied to all HTTP protocol methods for
which a corresponding @HttpMethodConstraint does NOT
occur within the @ServletSecurity annotation.

@HttpMethodConstraint - The @HttpMethodConstraint
annotation is used within the @ServletSecurity annotation to
represent security constraints on specific HTTP protocol
messages.

Java EE Security Servlet Container Security

Servlet Security Annotation Reference

Detailed descriptions could be found at:

http://jcp.org/en/jsr/detail?id=315

http://docs.oracle.com/javaee/7/api/javax/

servlet/annotation/package-summary.html

http://jcp.org/en/jsr/detail?id=315
http://docs.oracle.com/javaee/7/api/javax/servlet/annotation/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/servlet/annotation/package-summary.html

Java EE Security Servlet Container Security

Example is worth thousand words

For all HTTP methods, no constraints

@ServletSecurity

public class Example1 extends HttpServlet {

...

}

For all HTTP methods, no auth-constraint, confidential transport
required

@ServletSecurity(@HttpConstraint(transportGuarantee =

TransportGuarantee.CONFIDENTIAL))

public class Example2 extends HttpServlet {

...

}

Java EE Security Servlet Container Security

Example is worth thousand words

For all HTTP methods, all access denied

@ServletSecurity(@HttpConstraint(EmptyRoleSemantic.DENY))

public class Example3 extends HttpServlet {

}

For all HTTP methods, auth-constraint requiring membership in
Role R1

@ServletSecurity(@HttpConstraint(rolesAllowed = "R1"))

public class Example4 extends HttpServlet {

}

Java EE Security Servlet Container Security

Example is worth thousand words

For All HTTP methods except GET and POST, no constraints; for
methods GET and POST, auth-constraint requiring membership in
Role R1; for POST, confidential transport required

@ServletSecurity((httpMethodConstraints = {

@HttpMethodConstraint(value = "GET", rolesAllowed = "R1"),

@HttpMethodConstraint(value = "POST", rolesAllowed = "R1",

transportGuarantee = TransportGuarantee.CONFIDENTIAL)

})

public class Example5 extends HttpServlet {

}

For all HTTP methods except GET auth-constraint requiring
membership in Role R1; for GET, no constraints

@ServletSecurity(

value = @HttpConstraint(rolesAllowed = "R1"),

httpMethodConstraints = @HttpMethodConstraint("GET"))

public class Example6 extends HttpServlet {

}

Java EE Security Servlet Container Security

Example is worth thousand words

For all HTTP methods except TRACE, auth-constraint
requiring membership in Role R1; for TRACE, all access
denied

@ServletSecurity(

value = @HttpConstraint(rolesAllowed = "R1"),

httpMethodConstraints = @HttpMethodConstraint(

value="TRACE",

emptyRoleSemantic = EmptyRoleSemantic.DENY))

public class Example7 extends HttpServlet {

}

Java EE Security Servlet Container Security

Mapping @ServletSecurity to
security-constraint

Mapping @ServletSecurity with no contained
@HttpMethodConstraint

@ServletSecurity(@HttpConstraint(rolesAllowed = "R1"))

<security-constraint>

<web-resource-collection>

<url-pattern>...</url-pattern>

</web-resource-collection>

<auth-constraint>

<security-role-name>R1</security-role-name>

</auth-constraint>

</security-constraint>

Java EE Security Servlet Container Security

Mapping @ServletSecurity to
security-constraint

Mapping @ServletSecurity with contained @HttpMethodConstraint

@ServletSecurity(value=@HttpConstraint(rolesAllowed = "Role1"),

httpMethodConstraints = @HttpMethodConstraint(value = "TRACE",

emptyRoleSemantic = EmptyRoleSemantic.DENY))

<security-constraint>

<web-resource-collection>

<url-pattern>...</url-pattern>

<http-method-omission>TRACE</http-method-omission>

</web-resource-collection>

<auth-constraint>

<security-role-name>Role1</security-role-name>

</auth-constraint>

</security-constraint>

<security-constraint>

<web-resource-collection>

<url-pattern>...</url-pattern>

<http-method>TRACE</http-method>

</web-resource-collection>

<auth-constraint/>

</security-constraint>

Java EE Security Servlet Container Security

Roles

A servlet container enforces declarative or programmatic security
for the principal associated with an incoming request based on the
security attributes of the principal.

A deployer has mapped a security role to a user group in the
operational environment.

A deployer has mapped a security role to a principal name in a
security policy domain.

Java EE Security EJB Container Security

Basic idea of EJB security

Business methods of Enterprise Java Beans contain no
security-related logic.

Security policies for the application can be configured in a way
that is most appropriate for the operational environment of
the enterprise.

A security role is a semantic grouping of permissions that a
given type of users of the application must have in order to
successfully use the application.

Java EE Security EJB Container Security

Security Permission Specification

The Bean Provider can use metadata annotations or the
deployment descriptor to specify whether the caller’s security
identity or a run-as security identity should be used for the
execution of the bean’s methods.

By default, the caller principal will be propagated as the caller
identity. The Bean Provider can use the RunAs annotation to
specify that a security principal that has been assigned to a
specified security role be used instead.

If the deployment descriptor is used to specify the security
principal, the Bean Provider or the Application Assembler can
use the security-identity deployment descriptor element to
specify or override the security identity.

Java EE Security EJB Container Security

Programmatic Access to Caller’s Security
Context

The javax.ejb.EJBContext interface provides two methods (plus
two deprecated methods that were defined in EJB 1.0) that allow
the Bean Provider to access security information about the
enterprise bean’s caller.

public class MyBusinessBean {

@Resource

EJBContext ctx;

...

}

Java EE Security EJB Container Security

Security Related Annotations

Annotation Corresponding DD Element
@DeclareRoles security-role

@RolesAllowed method-permission

@PermitAll unchecked

@DenyAll exclude-list

@RunAs security-identity run-as

Java EE Security EJB Container Security

Security Related Annotations

Annotation Class Method
@DeclareRoles Yes No

@RolesAllowed Yes Yes

@PermitAll Yes Yes

@DenyAll Yes Yes

@RunAs Yes Yes

Java EE Security EE and Java Security Manager

EE 7: Java Security Manager

Java EE application components are able to run with Java Security
Manager.
Permission declarations must be stored in
META-INF/permissions.xml file within an EJB, web, application
client, or resource adapter archive in order for them to be located
and subsequently processed by the deployment machinery of the
Java EE Application server.

Java EE Security EE and Java Security Manager

Permissions Allowed in Web, EJB, and
Resource Adapter Components

java.lang.RuntimePermission loadLibrary.*

java.lang.RuntimePermission queuePrintJob

java.net.SocketPermission * connect

java.io.FilePermission * read,write

java.io.FilePermission file:${javax.servlet.context.temdir} read,
write

java.util.PropertyPermission

Section 3
JBoss Specific

JBoss Specific Annotations

PicketBox Authorization Annotations

We can reduce our boiler plate code using PicketBox
Annotations on POJOs.

@SecurityDomain Annotation
@Authentication Annotation
@Authorization Annotation
@SecurityMapping Annotation
@SecurityAudit Annotation
@Module Annotation
@ModuleOption Annotation
@SecurityConfig Annotation

More at http://community.jboss.org/wiki/
PicketBoxSecurityAnnotations

http://community.jboss.org/wiki/PicketBoxSecurityAnnotations
http://community.jboss.org/wiki/PicketBoxSecurityAnnotations

JBoss Specific Annotations

Annotated POJO example

import org.jboss.security.annotation.Authentication;

import org.jboss.security.annotation.Authorization;

import org.jboss.security.annotation.Module;

import org.jboss.security.annotation.ModuleOption;

import org.jboss.security.auth.spi.UsersRolesLoginModule;

import org.picketbox.plugins.authorization.PicketBoxAuthorizationModule;

@Authentication(modules={@Module(code = UsersRolesLoginModule.class, options =

{@ModuleOption})})

@Authorization(modules ={@Module(code = PicketBoxAuthorizationModule.class, options =

{@ModuleOption(key="roles",value="validuser")})})

public class AuthAuthorizationAnnotatedPOJO {

....

}

JBoss Specific LoginModules

PicketBox LoginModules

It is based on JAAS which is available as part of the JDK.

PicketBox provides simple various authentication and
authorization modules

Advanced LDAP based Authentication using
LdapExtLoginModule
LDAP based Authentication using LdapLoginModule
Database based Authentication using
DatabaseServerLoginModule
File based Authentication using UsersRolesLoginModule

More about PicketBox Authentication you can find at
http://community.jboss.org/wiki/

PicketBoxAuthentication

http://community.jboss.org/wiki/PicketBoxAuthentication
http://community.jboss.org/wiki/PicketBoxAuthentication

JBoss Specific LoginModules

Pasword Stacking Option

To use password stacking, each login module should set the
<module-option>password-stacking attribute to useFirstPass.
If a previous module configured for password stacking has
authenticated the user, all the other stacking modules will
consider the user authenticated and only attempt to provide a
set of roles for the authorization step.

When password-stacking option is set to useFirstPass, this
module first looks for a shared user name and password under
the property names javax.security.auth.login.name and
javax.security.auth.login.password respectively in the login
module shared state map.

JBoss Specific LoginModules

Password Stacking Simple Example

<application-policy name="todo">

<authentication>

<login-module code="org.jboss.security.auth.spi.LdapLoginModule"

flag="required">

<!-- LDAP configuration -->

<module-option name="password-stacking">useFirstPass</module-option>

</login-module>

<login-module code="org.jboss.security.auth.spi.DatabaseServerLoginModule" flag="required">

<!-- database configuration -->

<module-option name="password-stacking">useFirstPass</module-option>

</login-module>

</authentication>

</application-policy>

The end.
Thanks for listening.

	Java Authentication and Authorization Service
	Overview
	JAAS - putting it all together

	Java EE Security
	Overview
	Simple Example
	Java EE Security Architecture
	Servlet Container Security
	EJB Container Security
	EE and Java Security Manager

	JBoss Specific
	Annotations
	LoginModules

