

A4M36JEE

Clustering & Scalability

Václav Chalupa Radoslav Husár
Quality Engineer Software Engineer
Red Hat Red Hat

November 21, 2014

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar2

Agenda

● Clusters
● HA
● Load-balancing
● Scalability

● JGroups

● Infinispan

● Clustering in WildFly 8

● mod_cluster

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar3

Cluster in General

“A computer cluster consists of a set of loosely
connected computers that work together so that in
many respects they can be viewed as a single
system.”

Wikipedia

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar4

Motivation

● Interconnected

● But independent

● Made possible with:
● high-speed networking
● cheap commodity hardware

● Improve performance and/or availability

● Scale to handle higher load

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar5

Lets Define “Our” Cluster for Today

A cluster is a collection of WildFly 8 servers that
communicate with each other so as to improve the
availability of services by providing the following
capabilities:

● High Availability
● Scalability
● Fail-over
● Fault Tolerance

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar6

High Availability / HA

Capability to support server applications that can be
reliably utilized with a minimum down-time.

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar7

Scalability

Capability to handle a large number of requests
without service response time degradation.

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar8

Fail-over

Capability for a cluster node to take over the tasks or
requests processed by a failing node.

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar9

Fault Tolerance

Guarantee of correct behavior in the event of a failure.

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar10

So, why do we need Cluster?

Potential problems with deploying critical applications
on a single node:

● ?
● ?

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar11

What does Java EE say about clustering?

● Err, not much.

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar12

WildFly Clustering Areas

● Web session replication FO

● Stateful Session Bean (SFSB) replication FO

● Entity bean replication (2nd level caching) FO

● SingletonService

● mod_cluster auto-configuration LB

● HornetQ (JMS) clustering
● not covered here today

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar13

Making Deployments Clustered

● Distributed web sessions

● Add <distributable/> tag to web.xml
● Uses 'web' cache container, by default

● Clustered Stateful Session Beans

● Annotate @Stateful (WildFly 8.0.0.Final)
● Automatically clustered unless:
passivationCapable=false

● Uses 'ejb' cache container, by default

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar14

Notice about EJBs clustering

@Clustered annotation needed previously

● No more needed for WildFly
● EJBs clustered automatically
● You can disable clustering of SFSB by:
@Stateful(passivationCapable=false)

● From EJB 3.2

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar15

Distributable Sessions

● All session attributes must be serializable:
● Must implement java.io.Serializable
● Most native Java objects implement this functionality

● After updating any immutable objects stored in session:
● HttpSession.setAttribute() must be called to inform

the session replication that the session has changed

Ideally, sessions should be kept relatively small
● Less network traffic between the each clustered VM

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar16

Distributable Sessions – Immutable objects

● Known immutable values:
● Null, java.util.Collections.EMPTY_LIST/EMPTY_MAP/ EMPTY_SET

● The value type is or implements immutable type:
● Boolean, Byte, Character, Double, Float, Integer, Long, Short
● java.lang.Enum, StackTraceElement, String
● ...

● The value type is annotated with:
● @org.wildfly.clustering.web.annotation.Immutable

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar17

Application Must be Cluster-Aware

● Don't spawn custom services that should be singleton
in the cluster:

● Timers, whatnot
● Locking becomes complex

● Don't store data as flat files
● Store over NAS/SAN (NFS)
● Use DB
● Use data grid

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar18

EE @Singleton

Not cluster-wide singleton!

● @Singleton per JVM as spec dictates

● @Clustered @Singleton could be cluster-wide
singleton (not yet)

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar19

SingletonService (HA Singleton)

Create singleton service in ServiceActivator (MSC)
● SingletonService is started only on one node

● start(StartContext) : org.jboss.msc.service.Service

Example:

https://github.com/wildfly/quickstart/tree/master/cluster-ha-singleton

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar20

Clustered 2LC

● JPA/Hibernate 2nd level cache

● Infinispan is default 2nd level cache provider

● persistence.xml no longer needs to define
hibernate.cache.region.factory_class

● Uses “hibernate” cache container, by default
● Non-clustering profiles use local-cache

● Provides eviction & expiration support

● “ha” profiles use clustered caches

● invalidation-cache for entities/collections

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar21

Operational Modes

● Clustering is orthogonal to
● Standalone mode or
● Domain mode

● Clustering in domain “easier” to manage

● More on next lecture on management!

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar22

Changes from AS 4/5/~6

● All clustering services start on demand and stop when
no longer needed

● Lifecycle example:
● Deploy app1, starts channel and cache
● Deploy app2
● Undeploy app1
● Undeploy app2, stops cache and channel

● Starting a server with no deployments will not start any
channels/caches

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar23

Changes from AS 4/5/~6

● Infinispan replaced JBoss Cache as clustering toolkit
and session cache

● Configuration is now centralized.

● No more farm deployment.
● Domains and server groups provide this functionality.

● No out-of-box HA Singleton deployer.
● Deploy application backend to only one node

● No HA JNDI (replaced with client JNDI).

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar24

Extensions for Clustering in WildFly 8

org.jboss.as.clustering.jgroups

● Provides the communication between cluster nodes

org.jboss.as.clustering.infinispan

● Provides the replicated caching functionality

org.jboss.as.mod_cluster

● Provides integration and configuration with
mod_cluster software load balancer

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar25

Predefined Profiles

● Standalone mode
● standalone-ha.xml

● standalone-full-ha.xml

$ bin/standalone.sh c standaloneha.xml

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar26

Predefined Profiles

● Domain mode
● ha profile

● full-ha profile

Use “ha” profile from domain.xml:
<server-group name="clustered-group" profile="ha">

 <socket-binding-group ref="ha-sockets"/>

</server-group>

● $ bin/domain.sh

JGroups

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar28

What is not reliable?

Messages get:
● Lost and dropped

● Too big (UDP has a size limit), no fragmentation
● Buffer overflow at the receiver, switch (NIC, IP network buffer)

● Delivered in different order

● We don't know the members of the cluster (multicast)
● No notification when new node joins, leaves, or crashes

● Faster sender might overload slower receiver
● Flow control absence

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar29

So what Is JGroups ?

Toolkit for reliable cluster communication

● Provides:
● Fragmentation
● Message retransmission
● Flow control, Ordering
● Group membership, membership change notification

● LAN or WAN based
● IP multicasting transport default for LAN
● TCP transport default for WAN

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar30

Architecture of JGroups

STATESTATE

COMPRESSCOMPRESS

FLOWFLOW

NAKACKNAKACK

FRAGFRAG

UDPUDP

ChannelChannel

Network

send receive

STATESTATE

COMPRESSCOMPRESS

FLOWFLOW

NAKACKNAKACK

FRAGFRAG

UDPUDP

ChannelChannel

send receive

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar31

A Message

● src, dest: Address

● Address: identity of a member (of the cluster)

● src: filled in when sending (by JGroups)

● dest: null == send to all members of the group

● buffer: byte[]

● headers: hashmap of headers

● each protocol can add/remove its own headers

● example: sequence number for reliable retransmission

● Message travels across the network

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar32

Address

● A cluster consists of members
● Each member has its own address
● The address uniquely identifies one member

● Address is an abstract class
● Implemented as a UUID
● UUID is mapped to a physical address

● An address can have a logical name
● For instance 'a'
● If not set, JGroups picks the name, e.g. „host-16524”

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar33

View

● List of members (Addresses)
● Is the same in all members:

● A: {A,B,C}
● B: {A,B,C}
● C: {A,B,C}

● Updated when members join or leave
● All members receive all views in the same order
● Channel.getView() returns the current view

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar34

API
● Channel: similar to java.net.MulticastSocket

● But with built-in group membership, reliability

● Operations:
● Create a channel with a configuration (program. or xml)
● Connect to a group named 'x'

● Everyone that connects to "x" will see each other
● Send a message to all members of 'x'
● Send a message to a single member
● Receive a message
● Be notified when members join, leave (crashes included)
● Disconnect from the group
● Close the channel

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar35

API (Code)

 JChannel ch = new JChannel("udp.xml");

 ch.setReceiver(new ReceiverAdapter() {

 @Override public void receive(Message msg) {

 System.out.println("msg from " + msg.getSrc() + ": " + msg.getObject());

 }

 @Override public void viewAccepted(View new_view) {

 System.out.println("new view: " + new_view);

 }

 });

 ch.connect("demogroup");

 System.out.println("members are: " + ch.getView().getMembers());

 Message msg = new Message(null, null, "Hello world");

 ch.send(msg);

 ch.close();

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar36

State transfer

State is data shared by all nodes in a cluster
● Stock quotes
● HTTP web sessions

● Messages received in the same order will update the
state consistently across a cluster

● To add state transfer to an application, it has to
● Add STATE_TRANSFER to the config
● Implement the state transfer callbacks

● A new joiner needs to acquire state

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar37

Group Topology

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar38

Protocols (1)

● Transport
● UPD (IP Multicast), TCP, TCP_NIE, LOOPBACK

● Member discovery
● PING, TCPPING, TCPGOSSIP, MPING

● Failure detection (freeze up, crash)
● FD, FD_SOCK, VERIFY_SUSPECT, MERGE

● Reliable transmission and Ordering
● Sequence numbers, lost messages are retrasmitted

● Distributed Garbage Collection
● Agreement on all received messages

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar39

Protocols (2)

● Group Membership
● GMS
● New view on membership change

● Flow control
● FC
● Fast sender does not overwhelm slow ones

● Fragmentation
● FRAG, FRAG2
● Big messages are transmitted as smaller ones

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar40

Protocols (3)

● State Transfer
● STATE_TRANSFER
● New member receives the state of the group

● Security
● ENCRYPT, AUTH

● Debugging
● PERF, TRACE, STATS

● Simulation and testing
● DELAY, SHUFFLE, LOSS, PARTITIONER

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar41

JGroups Ergonomics

● Idea: observe the environment and adjust stack
configuration dynamically

● One configuration doesn't rule them all
● Scale from small to large clusters
● Shift from private to public cloud providers
● Account for traffic patterns

● WIP

● You can contribute if you like networks.

Infinispan

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar43

CACHE STORE / PERSISTENCE

● Store data from memory to other kind of storage
● File System, Relational Database, Other NoSQL stores

● Passivation support (spillover to disk)

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar44

PASSIVATION IN WILDFLY

<maxactivesessions>
1000

</maxactivesessions>

● Disabled by default

● Controls maximum number of sessions to keep
in memory, rest will be passivated.

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar45

EVICTION and PERSISTENCE in AS

● Handle too many active sessions

● Passivation - eviction from memory to disk

● A way to be nice to users (keep sessions for longer
time) and not crash the AS (with OOMs)

● Possibly handle restarts/upgrades

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar46

Cache Modes

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar47

Local mode

● Single node

● Non-clustered environment
● Unaware of other instances on network

● Why use LOCAL cache in AS?

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar48

Replication mode

● Each node contains all the entries

● Advantages

● N node cluster tolerates N-1 failures
● Read friendly – we don't need to fetch data from owner node
● Instant scale-in, no state transfer on leave

● Disadvantages

● Write unfriendly, put broadcast to every node
● Doesn't scale well
● When node joins all state has to be transfered to new node
● Heap size stays the same when we add nodes

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar49

Replication mode

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar50

Distribution mode

● Advantages

● Scales – number of replications is independent of cluster
size, depends only on number of owners

● Number of owners set to compromise between failure
tolerance and performance

● Virtual heap size = numNodes * heapSize / numOwners
● Disadvantages

● Not every node is an owner of the key, GET may require
network hops

● Node join and leave requires state transfer (rehash)

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar51

DISTRIBUTION

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar52

Invalidation mode

● Suitable for RDBMS off-loading, used with shared cache store

● Entry exists in node's local cache => it's valid and can be

● returned to requestor

● Entry doesn't exist in node's local cache => it's retrieved from

● the persistent store

● If a node modifies/removes entry it's invalidated in other nodes

● Low internode message traffic, PUT sends only invalidation

● messages and they are small.

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar53

INVALIDATION

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar54

Sync vs Async mode

● Synchronous
● All operations get confirmation that the other relevant

cluster nodes reached the desired state

● Asynchronous
● All operations block only until they perform local

changes, we don't wait for JGroups responses.
● Better throughput but no guarantees on data integrity in

cluster.

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar55

Using Infinispan from AS

● Customizing Infinispan Caches

● Eager vs. lazy startup mode
● <replicatedcache ... start=”LAZY|EAGER”>

● JNDI binding
● <cachecontainer ... jndiname=”...”>
● Assumes java:global namespace if unqualified

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar56

Using Directly

● On-demand injection of cache container
@ManagedBean

public class CustomBean<K, V> {

 @Resource(lookup = “java:jboss/infinispan/customcontainer”)

 private org.infinispan.manager.CacheContainer container;

 private org.infinispan.Cache<K, V> cache;

 @PostConstruct

 public void start() {

 this.cache = this.container.getCache();

 }

}

Load-balancers & mod_cluster

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar58

What is mod_cluster?

● Set of modules for Apache HTTPd and Tomcat-
based web servers

● requires Apache HTTPd 2.2.8+
● requires JBoss AS 5.0+ or Tomcat 6+

● Similar to mod_jk and mod_proxy enables HTTPd
to be a load-balancer in front of Java web servers

● JBoss.org LGPL project

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar59

Architecture #1

● Client requests proxied to back-end server
● AJP, HTTP, HTTPS protocols
● transparent to request handling on Java side

● Key difference:

back channel from back-end to the front-end
● Life-cycle information
● Load-balancing information
● Uses HTTP/HTTPS

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar60

Architecture #2

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar61

Overview of Key Benefits

● Simplified configuration
● Dynamic configuration instead of static
● HTTPd need not be preconfigured with cluster topology
● Little configuration on the HTTPd and web server side

● Improved load-balancing
● Load calculation done on the server side where more

information is available

● Fine grained life-cycle control
● Undeploy a running web app without 404s

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar62

Dynamic Configuration

● Backend web servers register with HTTPd at
startup

● Backend web server register applications' as they
are available

● No more static topology configuration on the HTTPd

● No workers.properties

● No uriworkermap.properties

● Auto-discovery
● HTTPd servers advertise themselves for web

servers to register with them using UDP multicast
● No topology information

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar63

No more worker.properties &
uriworkermap.properties

worker.list=lb
worker.lb.type=lb
worker.lb.balance_workers=node1,node2

worker.node1.type=ajp13
worker.node1.host=192.168.2.1
worker.node1.port=8009
worker.node1.lbfactor=1

worker.node2.type=ajp13
worker.node2.host=192.168.2.2
worker.node2.port=8009
worker.node2.lbfactor=1

/webapp/*=loadbalancer
/newwebapp/*=loadbalancer

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar64

Better Load-balancing

● Problem: load-balancer lacks information needed to
make optimal load-balancing decision

● Knows of: number of requests, sessions, sent/received
bytes, response times

● Ignores: backend server metrics, i.e. CPU usage,
available memory, DB connection pool

● Ignores: activity of other load-balancers

● Solution: backend web servers inform balancer how
much load they can handle

● Factor is a number between 1 to 100
● Relative factors are used to make decisions
● Backend servers have configured set of metrics

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar65

Load Metrics

● Metric tracked by the backend server to help make
decision

● e.g. available memory, CPU usage

● Multiple readings are combined to overall load factor
● Older readings decline in importance/weight

● Highly configurable
● Weights can be assigned to metrics, e.g. 50% CPU

usage and 50% connection pool usage
● Pluggable custom classes for metrics

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar66

List of Load Metrics

● Web tier usage:
● active sessions, busy connections, bytes send and

received, request count

● System utilization
● CPU utilization, system memory usage, JVM heap

usage, number of threads

● JCA connection pool usage

● Custom – build your own

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar67

Rolling Upgrades

● Problem: How to roll an upgrade without downtime?
● Most downtime caused by upgrades, not crashes.
● New release might be binary incompatible and cannot

re-join the cluster.
● Application and session incompatibilities
● Major JBoss AS version upgrades (6.0 to 7.1)
● Component upgrades (Infinispan)
● DB Schema upgrades

● General problem with large flat clusters.
● State transfers, merges, scalability

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar68

Rolling Upgrades

● Solution: mod_cluster load balancing groups (mod_jk's
domains)

● 20 node cluster == 2 load balancing groups of 10
nodes, each LB group is a cluster

● Session is replicated to all nodes within the LB group
● In case of crash, fail-over happens within the LB group

only
● If there are no alive servers in LB group the session is

lost forever and ever

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar69

Rolling Upgrades

● Upgrade entire domain at once.
● Disable all contexts in the domain (mod_cluster

manager)
● No new sessions are created on disabled nodes.
● Existing sessions are still directed to its' nodes.
● Drain all sessions – all sessions expired in the domain.
● Shutdown and perform an upgrade.
● Start the group (enabled).

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar70

Installation HTTPd

● HTTPd modules and Java side:

http://www.jboss.org/mod_cluster/downloads/

● Supported platforms
● Linux x86, x64, ia64
● Solaris x86, SPARC
● Windows x86, x64, ia64
● HP-UX PA-RISC, ia64
● build your own from sources

● Distributes will full distribution or just use the modules

● Straightforward migration

http://www.jboss.org/mod_cluster/downloads/

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar71

HTTPd Configuration
LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_ajp_module modules/mod_proxy_ajp.so
LoadModule cluster_slotmem_module modules/mod_cluster_slotmem.so
LoadModule manager_module modules/mod_manager.so
LoadModule proxy_cluster_module modules/mod_proxy_cluster.so
LoadModule advertise_module modules/mod_advertise.so

<IfModule manager_module>
 #Listen 127.0.1.1:6666
 Listen *:6666
 ManagerBalancerName mycluster

 <VirtualHost *:6666>
 KeepAliveTimeout 300
 MaxKeepAliveRequests 0
 AdvertiseFrequency 5
 ServerAdvertise On
 EnableMCPMReceive On
 AllowDisplay On
 <Location />
 Order deny,allow
 Allow from 127.0.1
 </Location>
 <Location /mod_cluster_manager>
 SetHandler mod_cluster-manager
 Order deny,allow
 #Deny from all
 #Allow from 127.0.1
 Allow from all
 </Location>
 </VirtualHost>
</IfModule>

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar72

WildFly Configuration

 <extensions>
 ...
 <extension module="org.jboss.as.mod_cluster"/>
 ...
 </extensions>
...
 <subsystem xmlns="urn:jboss:domain:modcluster:1.0">
 <mod-cluster-config advertise-socket="modcluster"/>
 </subsystem>
...
 <socket-binding-group name="standard-sockets" ...>
 <socket-binding name="modcluster" port="0" multicast-
address="224.0.1.105" multicast-port="23364"/>
...

Comes out-of-box in standalone-ha.xml profile

● Or add to your existing profile:

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar73

Demo: Try This At Home (Demo in LAB)

● Deployment
● One HTTPd with mod_cluster
● Two WildFly instances
● No static configuration – dynamic auto-discovery

● Scenario
● WAR demo application
● Client GUI to generate load and track load-balancing

● Part of distribution so you can try yourself!

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar74

Questions?

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar75

Thank you!

A4M36JEE 2014 Clustering | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar76

Community

● http://www.wildfly.org/

● http://www.jgroups.org/

● http://www.infinispan.org/

● https://www.jboss.org/mod_cluster

● http://www.jboss.org/

http://www.wildfly.org/
http://www.jgroups.org/
http://www.infinispan.org/
https://www.jboss.org/mod_cluster
http://www.jboss.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	What is unreliable ?
	So what Is JGroups ?
	Architecture of JGroups
	Slide 31
	Address, IpAddress
	View
	API
	Slide 35
	Slide 36
	Group topology
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76

