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Agenda

● Clusters
● HA
● Load-balancing
● Scalability

● JGroups

● Infinispan

● Clustering in WildFly 8

● mod_cluster
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Cluster in General

“A computer cluster consists of a set of loosely 
connected computers that work together so that in 
many respects they can be viewed as a single 
system.”

Wikipedia
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Motivation

● Interconnected

● But independent

● Made possible with: 
● high-speed networking 
● cheap commodity hardware

● Improve performance and/or availability

● Scale to handle higher load



A4M36JEE 2014 Clustering  | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar5

Lets Define “Our” Cluster for Today

A cluster is a collection of WildFly 8 servers that 
communicate with each other so as to improve the 
availability of services by providing the following 
capabilities:

● High Availability
● Scalability
● Fail-over
● Fault Tolerance
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High Availability / HA

Capability to support server applications that can be 
reliably utilized with a minimum down-time.
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Scalability

Capability to handle a large number of requests 
without service response time degradation. 
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Fail-over

Capability for a cluster node to take over the tasks or 
requests processed by a failing node. 
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Fault Tolerance

Guarantee of correct behavior in the event of a failure. 
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So, why do we need Cluster?

Potential problems with deploying critical applications 
on a single node:

● ?
● ? 
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What does Java EE say about clustering?

● Err, not much.
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WildFly Clustering Areas

● Web session replication FO

● Stateful Session Bean (SFSB) replication FO

● Entity bean replication (2nd level caching) FO

● SingletonService

● mod_cluster auto-configuration LB

● HornetQ (JMS) clustering
● not covered here today 
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Making Deployments Clustered

● Distributed web sessions

● Add <distributable/> tag to web.xml
● Uses 'web' cache container, by default

● Clustered Stateful Session Beans

● Annotate @Stateful (WildFly 8.0.0.Final)
● Automatically clustered unless: 
passivationCapable=false

● Uses 'ejb' cache container, by default
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Notice about EJBs clustering

@Clustered annotation needed previously

 
● No more needed for WildFly
● EJBs clustered automatically
● You can disable clustering of SFSB by: 
@Stateful(passivationCapable=false)

● From EJB 3.2
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Distributable Sessions

● All session attributes must be serializable: 
● Must implement java.io.Serializable
● Most native Java objects implement this functionality

● After updating any immutable objects stored in session:
● HttpSession.setAttribute() must be called to inform 

the session replication that the session has changed

Ideally, sessions should be kept relatively small
● Less network traffic between the each clustered VM    
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Distributable Sessions – Immutable objects

● Known immutable values:
● Null, java.util.Collections.EMPTY_LIST/EMPTY_MAP/ EMPTY_SET

● The value type is or implements immutable type:
● Boolean, Byte, Character, Double, Float, Integer, Long, Short
● java.lang.Enum, StackTraceElement, String
● ...

● The value type is annotated with:
● @org.wildfly.clustering.web.annotation.Immutable
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Application Must be Cluster-Aware

● Don't spawn custom services that should be singleton 
in the cluster:

● Timers, whatnot
● Locking becomes complex

● Don't store data as flat files
● Store over NAS/SAN (NFS)
● Use DB
● Use data grid



A4M36JEE 2014 Clustering  | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar18

EE @Singleton

Not cluster-wide singleton!

● @Singleton per JVM as spec dictates

● @Clustered @Singleton could be cluster-wide 
singleton (not yet)
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SingletonService (HA Singleton)

Create singleton service in ServiceActivator (MSC)
● SingletonService is started only on one node

● start(StartContext) : org.jboss.msc.service.Service

Example:

https://github.com/wildfly/quickstart/tree/master/cluster-ha-singleton
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Clustered 2LC

● JPA/Hibernate 2nd level cache

● Infinispan is default 2nd level cache provider

● persistence.xml no longer needs to define 
hibernate.cache.region.factory_class

● Uses “hibernate” cache container, by default
● Non-clustering profiles use local-cache

● Provides eviction & expiration support

● “ha” profiles use clustered caches

● invalidation-cache for entities/collections
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Operational Modes

● Clustering is orthogonal to
● Standalone mode or
● Domain mode

● Clustering in domain “easier” to manage

● More on next lecture on management!
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Changes from AS 4/5/~6

● All clustering services start on demand and stop when 
no longer needed

● Lifecycle example:
● Deploy app1, starts channel and cache
● Deploy app2
● Undeploy app1
● Undeploy app2, stops cache and channel

● Starting a server with no deployments will not start any 
channels/caches
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Changes from AS 4/5/~6

● Infinispan replaced JBoss Cache as clustering toolkit 
and session cache

● Configuration is now centralized.

● No more farm deployment.
● Domains and server groups provide this functionality.

● No out-of-box HA Singleton deployer.
● Deploy application backend to only one node

● No HA JNDI (replaced with client JNDI). 
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Extensions for Clustering in WildFly 8

org.jboss.as.clustering.jgroups

● Provides the communication between cluster nodes

org.jboss.as.clustering.infinispan

● Provides the replicated caching functionality

org.jboss.as.mod_cluster

● Provides integration and configuration with 
mod_cluster software load balancer
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Predefined Profiles

● Standalone mode
● standalone-ha.xml 

● standalone-full-ha.xml

$ bin/standalone.sh c standaloneha.xml
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Predefined Profiles

● Domain mode
● ha profile

● full-ha profile

Use “ha” profile from domain.xml:
<server-group name="clustered-group" profile="ha">

     <socket-binding-group ref="ha-sockets"/>

</server-group>

● $ bin/domain.sh



  

JGroups
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What is not reliable?

Messages get:
● Lost and dropped

● Too big (UDP has a size limit), no fragmentation
● Buffer overflow at the receiver, switch (NIC, IP network buffer)

● Delivered in different order

● We don't know the members of the cluster (multicast)
● No notification when new node joins, leaves, or crashes

● Faster sender might overload slower receiver
● Flow control absence
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So what Is JGroups ?

Toolkit for reliable cluster communication

● Provides:
● Fragmentation
● Message retransmission
● Flow control, Ordering
● Group membership, membership change notification

● LAN or WAN based
● IP multicasting transport default for LAN
● TCP transport default for WAN
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Architecture of JGroups

STATESTATE

COMPRESSCOMPRESS

FLOWFLOW

NAKACKNAKACK

FRAGFRAG

UDPUDP

ChannelChannel

Network

send receive

STATESTATE
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FLOWFLOW
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FRAGFRAG

UDPUDP

ChannelChannel

send receive
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A Message

● src, dest: Address

● Address: identity of a member (of the cluster)

● src: filled in when sending (by JGroups)

● dest: null == send to all members of the group

● buffer: byte[]

● headers: hashmap of headers

● each protocol can add/remove its own headers

● example: sequence number for reliable retransmission

● Message travels across the network
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Address

● A cluster consists of members
● Each member has its own address
● The address uniquely identifies one member

● Address is an abstract class
● Implemented as a UUID
● UUID is mapped to a physical address

● An address can have a logical name
● For instance 'a'
● If not set, JGroups picks the name, e.g. „host-16524”
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View

● List of members (Addresses)
● Is the same in all members:

● A: {A,B,C}
● B: {A,B,C}
● C: {A,B,C}

● Updated when members join or leave
● All members receive all views in the same order
● Channel.getView() returns the current view
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API
● Channel: similar to java.net.MulticastSocket

● But with built-in group membership, reliability

● Operations:
● Create a channel with a configuration (program. or xml)
● Connect to a group named 'x'

● Everyone that connects to "x" will see each other
● Send a message to all members of 'x'
● Send a message to a single member
● Receive a message
● Be notified when members join, leave (crashes included)
● Disconnect from the group
● Close the channel
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API (Code)

      JChannel ch = new JChannel("udp.xml");

      ch.setReceiver(new ReceiverAdapter() {

          @Override public void receive(Message msg) {

                   System.out.println("msg from " + msg.getSrc() + ": " + msg.getObject());

          }

          @Override public void viewAccepted(View new_view) {

                 System.out.println("new view: " + new_view);

          }

      });

      ch.connect("demogroup");

      System.out.println("members are: " + ch.getView().getMembers());

      Message msg = new Message(null, null, "Hello world");

      ch.send(msg);

      ch.close();
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State transfer

State is data shared by all nodes in a cluster
● Stock quotes
● HTTP web sessions

● Messages received in the same order will update the 
state consistently across a cluster

● To add state transfer to an application, it has to
● Add STATE_TRANSFER to the config
● Implement the state transfer callbacks

● A new joiner needs to acquire state



A4M36JEE 2014 Clustering  | Václav Chalupa | Radoslav Husár | twitter.com/radoslavhusar37

Group Topology
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Protocols (1)

● Transport
● UPD (IP Multicast), TCP, TCP_NIE, LOOPBACK

● Member discovery
● PING, TCPPING, TCPGOSSIP, MPING

● Failure detection (freeze up, crash)
● FD, FD_SOCK, VERIFY_SUSPECT, MERGE

● Reliable transmission and Ordering
● Sequence numbers, lost messages are retrasmitted

● Distributed Garbage Collection
● Agreement on all received messages
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Protocols (2)

● Group Membership
● GMS 
● New view on membership change

● Flow control 
● FC
● Fast sender does not overwhelm slow ones

● Fragmentation 
● FRAG, FRAG2
● Big messages are transmitted as smaller ones
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Protocols (3)

● State Transfer
● STATE_TRANSFER
● New member receives the state of the group

● Security
● ENCRYPT, AUTH

● Debugging
● PERF, TRACE, STATS

● Simulation and testing
● DELAY, SHUFFLE, LOSS, PARTITIONER
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JGroups Ergonomics

● Idea: observe the environment and adjust stack 
configuration dynamically

● One configuration doesn't rule them all
● Scale from small to large clusters
● Shift from private to public cloud providers
● Account for traffic patterns

● WIP

● You can contribute if you like networks.



  

Infinispan
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CACHE STORE / PERSISTENCE

● Store data from memory to other kind of storage
● File System, Relational Database, Other NoSQL stores 

● Passivation support (spillover to disk)
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PASSIVATION IN WILDFLY

<maxactivesessions>
1000

</maxactivesessions>

● Disabled by default

● Controls maximum number of sessions to keep 
in memory, rest will be passivated.
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EVICTION and PERSISTENCE in AS

● Handle too many active sessions

● Passivation - eviction from memory to disk

● A way to be nice to users (keep sessions for longer 
time) and not crash the AS (with OOMs)

● Possibly handle restarts/upgrades
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Cache Modes
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Local mode

● Single node

● Non-clustered environment
● Unaware of other instances on network

● Why use LOCAL cache in AS?
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Replication mode

● Each node contains all the entries

● Advantages

● N node cluster tolerates N-1 failures
● Read friendly – we don't need to fetch data from owner node
● Instant scale-in, no state transfer on leave

● Disadvantages

● Write unfriendly, put broadcast to every node
● Doesn't scale well
● When node joins all state has to be transfered to new node
● Heap size stays the same when we add nodes
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Replication mode
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Distribution mode

● Advantages

● Scales – number of replications is independent of cluster 
size, depends only on number of owners

● Number of owners set to compromise between failure 
tolerance and performance

● Virtual heap size = numNodes * heapSize / numOwners
● Disadvantages

● Not every node is an owner of the key, GET may require 
network hops

● Node join and leave requires state transfer (rehash)
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DISTRIBUTION
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Invalidation mode

● Suitable for RDBMS off-loading, used with shared cache store

● Entry exists in node's local cache => it's valid and can be

● returned to requestor

● Entry doesn't exist in node's local cache => it's retrieved from

● the persistent store

● If a node modifies/removes entry it's invalidated in other nodes

● Low internode message traffic, PUT sends only invalidation

● messages and they are small.
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INVALIDATION
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Sync vs Async mode

● Synchronous
● All operations get confirmation that the other relevant 

cluster nodes reached the desired state

● Asynchronous
● All operations block only until they perform local 

changes, we don't wait for JGroups responses.
● Better throughput but no guarantees on data integrity in 

cluster.
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Using Infinispan from AS

● Customizing Infinispan Caches

● Eager vs. lazy startup mode
● <replicatedcache ... start=”LAZY|EAGER”>

● JNDI binding
● <cachecontainer ... jndiname=”...”>
● Assumes java:global namespace if unqualified
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Using Directly

● On-demand injection of cache container
@ManagedBean

public class CustomBean<K, V> {

    @Resource(lookup = “java:jboss/infinispan/customcontainer”)

    private org.infinispan.manager.CacheContainer container;

    private org.infinispan.Cache<K, V> cache;

    @PostConstruct

    public void start() {

        this.cache = this.container.getCache();

    }

}



  

Load-balancers & mod_cluster
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What is mod_cluster?

● Set of modules for Apache HTTPd and Tomcat-
based web servers

● requires Apache HTTPd 2.2.8+
● requires JBoss AS 5.0+ or Tomcat 6+

● Similar to mod_jk and mod_proxy enables HTTPd 
to be a load-balancer in front of Java web servers

● JBoss.org LGPL project
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Architecture #1

● Client requests proxied to back-end server
● AJP, HTTP, HTTPS protocols
● transparent to request handling on Java side

● Key difference:

back channel from back-end to the front-end
● Life-cycle information
● Load-balancing information
● Uses HTTP/HTTPS
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Architecture #2
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Overview of Key Benefits

● Simplified configuration
● Dynamic configuration instead of static
● HTTPd need not be preconfigured with cluster topology
● Little configuration on the HTTPd and web server side

● Improved load-balancing
● Load calculation done on the server side where more 

information is available

● Fine grained life-cycle control
● Undeploy a running web app without 404s
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Dynamic Configuration

● Backend web servers register with HTTPd at 
startup

● Backend web server register applications' as they 
are available

● No more static topology configuration on the HTTPd

● No workers.properties

● No uriworkermap.properties

● Auto-discovery
● HTTPd servers advertise themselves for web 

servers to register with them using UDP multicast
● No topology information
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No more worker.properties & 
uriworkermap.properties

worker.list=lb
worker.lb.type=lb
worker.lb.balance_workers=node1,node2

worker.node1.type=ajp13
worker.node1.host=192.168.2.1
worker.node1.port=8009
worker.node1.lbfactor=1

worker.node2.type=ajp13
worker.node2.host=192.168.2.2
worker.node2.port=8009
worker.node2.lbfactor=1

/webapp/*=loadbalancer
/newwebapp/*=loadbalancer
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Better Load-balancing

● Problem: load-balancer lacks information needed to 
make optimal load-balancing decision

● Knows of: number of requests, sessions, sent/received 
bytes, response times

● Ignores: backend server metrics, i.e. CPU usage, 
available memory, DB connection pool

● Ignores: activity of other load-balancers

● Solution: backend web servers inform balancer how 
much load they can handle

● Factor is a number between 1 to 100
● Relative factors are used to make decisions
● Backend servers have configured set of metrics
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Load Metrics

● Metric tracked by the backend server to help make 
decision

● e.g. available memory, CPU usage

● Multiple readings are combined to overall load factor
● Older readings decline in importance/weight

● Highly configurable
● Weights can be assigned to metrics, e.g. 50% CPU 

usage and 50% connection pool usage
● Pluggable custom classes for metrics
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List of Load Metrics

● Web tier usage:
● active sessions, busy connections, bytes send and 

received, request count

● System utilization
● CPU utilization, system memory usage, JVM heap 

usage, number of threads

● JCA connection pool usage

● Custom – build your own
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Rolling Upgrades

● Problem: How to roll an upgrade without downtime? 
● Most downtime caused by upgrades, not crashes.
● New release might be binary incompatible and cannot 

re-join the cluster.
● Application and session incompatibilities
● Major JBoss AS version upgrades (6.0 to 7.1)
● Component upgrades (Infinispan)
● DB Schema upgrades

● General problem with large flat clusters.
● State transfers, merges, scalability
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Rolling Upgrades

● Solution: mod_cluster load balancing groups (mod_jk's 
domains)

● 20 node cluster == 2 load balancing groups of 10 
nodes, each LB group is a cluster

● Session is replicated to all nodes within the LB group
● In case of crash, fail-over happens within the LB group 

only
● If there are no alive servers in LB group the session is 

lost forever and ever
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Rolling Upgrades

● Upgrade entire domain at once.
● Disable all contexts in the domain (mod_cluster 

manager)
● No new sessions are created on disabled nodes.
● Existing sessions are still directed to its' nodes.
● Drain all sessions – all sessions expired in the domain.
● Shutdown and perform an upgrade.
● Start the group (enabled).
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Installation HTTPd

● HTTPd modules and Java side:

http://www.jboss.org/mod_cluster/downloads/

● Supported platforms
● Linux x86, x64, ia64
● Solaris x86, SPARC
● Windows x86, x64, ia64
● HP-UX PA-RISC, ia64
● build your own from sources

● Distributes will full distribution or just use the modules

● Straightforward migration

http://www.jboss.org/mod_cluster/downloads/
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HTTPd Configuration
LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_ajp_module modules/mod_proxy_ajp.so
LoadModule cluster_slotmem_module modules/mod_cluster_slotmem.so
LoadModule manager_module modules/mod_manager.so
LoadModule proxy_cluster_module modules/mod_proxy_cluster.so
LoadModule advertise_module modules/mod_advertise.so

<IfModule manager_module>
    #Listen 127.0.1.1:6666
    Listen *:6666
    ManagerBalancerName mycluster
 
    <VirtualHost *:6666>
        KeepAliveTimeout 300
        MaxKeepAliveRequests 0
        AdvertiseFrequency 5
        ServerAdvertise On
        EnableMCPMReceive On
        AllowDisplay On
        <Location />
            Order deny,allow
            Allow from 127.0.1
        </Location>
        <Location /mod_cluster_manager>
            SetHandler mod_cluster-manager
            Order deny,allow
            #Deny from all
            #Allow from 127.0.1
            Allow from all
        </Location>
     </VirtualHost>
</IfModule>
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WildFly Configuration

    <extensions>
        ...
        <extension module="org.jboss.as.mod_cluster"/>
        ...
    </extensions>
...
    <subsystem xmlns="urn:jboss:domain:modcluster:1.0">
        <mod-cluster-config advertise-socket="modcluster"/>
    </subsystem>
...
    <socket-binding-group name="standard-sockets" ...>
        <socket-binding name="modcluster" port="0" multicast-
address="224.0.1.105" multicast-port="23364"/>
...

Comes out-of-box in standalone-ha.xml profile

● Or add to your existing profile:
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Demo: Try This At Home (Demo in LAB)

● Deployment
● One HTTPd with mod_cluster
● Two WildFly instances
● No static configuration – dynamic auto-discovery

● Scenario
● WAR demo application
● Client GUI to generate load and track load-balancing

● Part of distribution so you can try yourself!
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Questions?
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Thank you!
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Community

● http://www.wildfly.org/

● http://www.jgroups.org/

● http://www.infinispan.org/

● https://www.jboss.org/mod_cluster

● http://www.jboss.org/

http://www.wildfly.org/
http://www.jgroups.org/
http://www.infinispan.org/
https://www.jboss.org/mod_cluster
http://www.jboss.org/
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