
JCR JPA (initial) JPA + CQRS + Optimization Notes
1000 XSD writes (+ several thousand derived), no batching 265.959 sec 380.481 sec 342.463 sec

1000 XSD writes (+ several thousand derived), 10 batches 50.283 sec 303.330 sec 266.244 sec

query: get all XsdDocuments (not paged) 7.089 sec 3.940 sec .408 sec

query: get all ComplexTypeDeclarations, using a relationship path (n 7.772 sec 3.278 sec .284 sec

query: by UUID .022 sec .02 sec .019 sec

get metadata by UUID .014 sec 0.061 sec .037 sec

full text search (returns all XsdDocuments) (not paged) 6.057 sec 1.902 sec .563 sec

1000 XSD writes (+ several thousand derived), no batching 22.523 sec

1000 XSD writes (+ several thousand derived), 10 batches 9.532 sec

query: get all XsdDocuments (not paged) .443 sec

query: get all ComplexTypeDeclarations, using a relationship path (n .323 sec

query: by UUID .041 sec

get metadata by UUID .048 sec

full text search (returns all XsdDocuments) (not paged) 1.458 sec

Expected (Hibernate Search indexing, moderately complex joined table structure, etc., versus simple JCR nodes)

JCR persists each batch in a single transaction. JPA uses 1 transaction per item in the batch (which seems desirable).

JCR may always be faster here, since we can simply lookup by path.

To me, this one's the most exciting.  Proper clustering, etc. will make this extremely scalable.

JPA + CQRS + Optimization + Query Cache + Infinispan 2LC
Surprising, but expected.  This optimized several types of repeated queries used to initialize relationship targets, etc.

Surprising, but expected.  This optimized several types of repeated queries used to initialize relationship targets, etc.

Slight increase, due to cost of cache puts.

Slight increase, due to cost of cache puts.

Slight increase, due to cost of cache puts.

Slight increase, due to cost of cache puts.

Slight increase, due to cost of cache puts.


