
© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction1

Developing an Editor for Directed Graphs

An Introduction to the Eclipse Graphical
Editing Framework

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction2

Speaker

 Koen Aers
 JBoss, a Division of Red Hat

 JBoss jBPM (http://labs.jboss.org/jbossjbpm)

 JBoss Tools (http://labs.jboss.org/tools)

 => Graphical Process Designer
(http://labs.jboss.org/jbossjbpm/gpd)

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction3

Agenda

 What is GEF?
 GEF Applied : A Graph Editor

 An Empty Graph Editor

 Adding the Nodes

 Doing Things With Nodes

 Showing Connections

 Creating New Nodes and Connections

 Adding Delete Support

 Final Reflections

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction4

What is GEF?

 Graphical Editing Framework
 Create a Rich Graphical Editor
 Consists of 2 plug-in

 Draw2D : layout and rendering toolkit for displaying graphics

 GEF : framework using the old Smalltalk MVC principles
 MVC : Model, Figure, EditPart

 Input events are translated to requests

 EditPart has a chain-of-responsibility of so-called EditPolicies

 EditPolicies translate the requests into GEF Commands when appropriate

 Commands get executed and result in model changes

 Model is observed by EditPart

 When model changes, EditPart refreshes the view

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction5

Structure of a Typical GEF Editor

GraphEditor

PaletteViewer

EditDomain PaletteRoot

GraphicalViewer

EditPartFactory

ConnectionEditPart

NodeEditPart

RootEditPart

GraphEditPart

Graph

Node

Connection

observes

observes

observes

creates

1

1..n

1

1

1

1

1

1

1
1..n

1..n

1..n

1..n

1..n

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction6

Typical GEF MVC Interactions

NodeEditPartNodeFigure

NodeGraphicalNodeEditPolicy

ConnectionCreateCommand

NodeComponentEditPolicy

NodeDeleteCommand

Node

Graph

Connection

refreshes

creates

creates
modifies

creates

modifies

observes
1..n

1..n

1

1

1

1

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction7

An Empty Graph Editor

 Eclipse Plug-in with Editor
 Add a GraphicalViewer
 Add a RootEditPart
 Define the Graph model
 Define the GraphEditPart
 Define and Add the EditPartFactory

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction8

An Empty Editor for Directed Graphs

GraphEditor

GraphicalViewer

EditPartFactory

RootEditPart

GraphEditPart

Graph

creates

1

11 1..n

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction9

Eclipse Plug-in with Editor
<plugin
 id="org.jbpm.graph.ui"
 name="JBoss jBPM Graph Designer"
 version=“1.0.0"
 provider-name="JBoss, a Division of Red Hat"
 class="org.jbpm.graph.ui.GraphPlugin">
 …
 <extension point = "org.eclipse.ui.editors">
 <editor
 id = "org.jbpm.graph.ui.editor.GraphEditor"
 name = "First jBPM Graph Editor"
 icon = "icons/full/obj16/par_obj.gif"
 extensions = "par"
 class = "org.jbpm.graph.ui.editor.GraphEditor" >
 </editor>
 </extension>
</plugin>

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction10

Eclipse Plug-in with Editor

public class GraphEditor extends EditorPart {
 …
 public void init(IEditorSite site, IEditorInput input)
 throws PartInitException {
 setSite(site);
 setInput(input);
 }
 …
 public void createPartControl(Composite parent) {
 Label label = new Label(parent, SWT.NONE);
 label.setText("Hello from first jBPM Graph Editor!");
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction11

Eclipse Plug-in with Editor

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction12

Add an EditPartViewer

 GraphicalViewer is special kind of EditPartViewer
 An adapter on an SWT Control that manages the EditPart
 Populated by setting its contents

public void createPartControl(Composite parent) {
 ScrollingGraphicalViewer viewer =
 new ScrollingGraphicalViewer();
 viewer.createControl(parent);

viewer.getControl().setBackground(ColorConstants.white);
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction13

Add an EditPartViewer

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction14

Add the RootEditPart

 Bridges the gap between the EditPartViewer and its contents
 Can provide for all kinds of services : zooming, freeform figures,

etc.

public void createPartControl(Composite parent) {
 ScrollingGraphicalViewer viewer =
 new ScrollingGraphicalViewer();
 viewer.createControl(parent);
 viewer.setRootEditPart(new ScalableFreeformRootEditPart());
 viewer.getControl().setBackground(ColorConstants.white);
}

http://127.0.0.1:59294/help/topic/org.eclipse.gef.doc.isv/reference/api/org/eclipse/gef/EditPartViewer.html

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction15

Add the EditPartFactory

 A factory for creating new EditParts
 Used when EditPart of EditPartViewer wants to create a new

EditPart
 Used when setting contents of EditPartViewer

public void createPartControl(Composite parent) {
 …
 viewer.setRootEditPart(new ScalableFreeformRootEditPart());
 viewer.getControl().setBackground(ColorConstants.white);
 viewer.setEditPartFactory(new GraphEditPartFactory());
 viewer.setContents(new Graph());
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction16

Define the Graph Model

 Initial simplistic model
 Used as the contents of the GraphicalViewer

public class Graph {}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction17

Define the GraphEditPartFactory

 Only Graph objects are considered
 Return a GraphEditPart instance

public class GraphicalEditPartFactory
 implements EditPartFactory {

 public EditPart createEditPart(
 EditPart context, Object model) {
 if (model instanceof Graph) {
 return new GraphEditPart((Graph)model);
 } else {
 return null;
 }
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction18

Define the GraphEditPart
public class GraphEditPart
 extends AbstractGraphicalEditPart {

 public GraphEditPart(Graph graph) {
 setModel(graph);
 }

 protected IFigure createFigure() {
 FreeformLayer layer = new FreeformLayer();
 layer.setLayoutManager(new FreeformLayout());
 layer.setBorder(new LineBorder(1));
 return layer;
 }

 protected void createEditPolicies() {}

}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction19

Editor Showing Empty Graph

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction20

Adding the Nodes

 The Model Class : Node
 Graphical Representation : NodeFigure
 The Controller : NodeEditPart
 Update the GraphEditPartFactory
 Update the GraphEditPart

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction21

Adding Nodes to the Editor

GraphEditor

GraphicalViewer

EditPartFactory

NodeEditPart

RootEditPart

GraphEditPart

Graph

Node

observes

observescreates

1

1

1

1 1..n

1..n

1..n

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction22

Define the Model : Node

public class Node {
 Rectangle constraint;
 String name;
 public Rectangle getConstraint() {
 return constraint;
 }
 public void setConstraint(Rectangle constraint) {
 this.constraint = constraint;
 }
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction23

Define the Model : Graph Revisited

 Graphs manage a list of nodes

public class Graph {
 List nodes;
 public List getNodes() {
 if (nodes == null) nodes = new ArrayList();
 return nodes;
 }
 public void addNode(Node node) {
 getNodes().add(node);
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction24

Define the Model : ContentProvider

public void createPartControl(Composite parent) {
 …
 viewer.setContents(
 ContentProvider.INSTANCE.newSampleGraph());
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction25

ContentProvider Continued

public class ContentProvider {
 public static final ContentProvider INSTANCE =
 new ContentProvider();
 public Graph newSampleGraph() {
 Graph result = new Graph();
 result.addNode(newNode(200, 150, 65, 35, “first”));
 result.addNode(newNode(300, 250, 65, 35, “second”));
 result.addNode(newNode(100, 300, 65, 35, "third”));
 return result;
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction26

ContentProvider Continued

public class ContentProvider {
 public static final ContentProvider INSTANCE =
 new ContentProvider();
 …
 private Node newNode(
 int x, int y, int width, int height, String name) {
 Node result = new Node();
 result.setConstraint(
 new Rectangle(new Point(x, y),
 new Dimension(width, height)));
 result.setName(name);
 return result;
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction27

Define the View : NodeFigure
 Mostly using the Draw2D framework

public class NodeFigure extends Figure {
 private Label label;
 private RectangleFigure rectangle;
 public NodeFigure() {
 setLayoutManager(new XYLayout());
 rectangle = new RectangleFigure();
 add(rectangle);
 label = new Label();
 add(label);
 }
 public Label getLabel() {
 return label;
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction28

Define the View : NodeFigure (ct’d)

public class NodeFigure extends Figure {
 …
 public void paintFigure(Graphics g) {
 Rectangle r = getBounds().getCopy();
 setConstraint(
 rectangle, new Rectangle(0, 0, r.width, r.height));

 setConstraint(
 label, new Rectangle(0, 0, r.width, r.height));

 rectangle.invalidate();
 label.invalidate();
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction29

Define the Controller : NodeEditPart

public class NodeEditPart extends AbstractGraphicalEditPart {
 public NodeEditPart(Node node) { setModel(node); }
 protected IFigure createFigure() { return new
NodeFigure(); }
 protected void createEditPolicies() {}
 public void refreshVisuals() {
 NodeFigure figure = (NodeFigure)getFigure();
 Node node = (Node)getModel();
 GraphEditPart parent = (GraphEditPart)getParent();
 figure.getLabel().setText(node.getName());
 Rectangle r = new Rectangle(node.getConstraint());
 parent.setLayoutConstraint(this, figure, r);
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction30

GraphEditPartFactory Revisited

public class GraphicalEditPartFactory
 implements EditPartFactory {

 public EditPart createEditPart(
 EditPart context, Object model) {
 if (model instanceof Graph) {
 return new GraphEditPart((Graph)model);
 } else if (model instanceof Node) {
 return new NodeEditPart((Node)model);
 } else {
 return null;
 }
 }

}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction31

GraphEditPart Revisited

public class GraphEditPart
extends AbstractGraphicalEditPart {
 public GraphEditPart(Graph graph) {
 setModel(graph);
 }
 protected List getModelChildren() {
 return ((Graph)getModel()).getNodes();
 }
 protected IFigure createFigure() {
 FreeformLayer layer = new FreeformLayer();
 layer.setLayoutManager(new FreeformLayout());
 layer.setBorder(new LineBorder(1));
 return layer;
 }
 protected void createEditPolicies() {}
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction32

Adding the Nodes : the Result

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction33

Doing Things With Nodes

 Adding the Spine : EditDomain
 Transform Requests into Commands : EditPolicy
 Implementing Commands to Modify the Model
 Having the EditParts React to Model Changes : Observer
 Undo and Redo Support: ActionRegistry and

ActionBarContributor

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction34

The Node Move/Resize Scenario

NodeEditPartNodeFigure

GraphXYLayoutEditPolicy NodeChangeConstraintComman
d

Node

refreshes

creates

modifies

observes

1

1

1

GraphEditPart

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction35

GEF’s Spine : the EditDomain Class

 State of a ‘GEF Application’
 CommandStack

 One or more EditPartViewers

 Active Tool
 Tied with an Eclipse IEditorPart

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction36

Adding the EditDomain

public class GraphEditor extends EditorPart {
 private EditDomain editDomain;
 …
 public void init(IEditorSite site, IEditorInput input)
 throws PartInitException {
 …
 initEditDomain()
 }
 private void initEditDomain() {
 editDomain = new DefaultEditDomain(this);
 }
 public void createPartControl(Composite parent) {
 …
 editDomain.addViewer(viewer);
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction37

NodeChangeConstraintCommand

public class NodeChangeConstraintCommand extends Command {
 private Rectangle newConstraint;
 private Rectangle oldConstraint;
 private Node node;
 public void execute() {
 if (oldConstraint == null)
 oldConstraint = new Rectangle(node.getConstraint());
 node.setConstraint(newConstraint);
 }
 public void undo() {node.setConstraint(oldConstraint);}
 public void setNewConstraint(Rectangle newConstraint) {
 this.newConstraint = newConstraint;
 }
 public void setNode(Node node) { this.node = node; }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction38

GraphXYLayoutEditPolicy

public class GraphXYLayoutEditPolicy
extends XYLayoutEditPolicy {
 protected Command createChangeConstraintCommand(
 EditPart child, Object constraint) {
 NodeChangeConstraintCommand changeConstraintCommand =
 new NodeChangeConstraintCommand();
 changeConstraintCommand.setNode((Node)child.getModel());
 changeConstraintCommand.setNewConstraint(
 (Rectangle)constraint);
 return changeConstraintCommand;
 }
 // We use a stub implementation for the other methods
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction39

GraphEditPart Revisited Again

 Editparts maintain lists of EditPolicies
 Chain of responsability enabling certain commands

public class GraphEditPart
extends AbstractGraphicalEditPart {
 …
 protected void createEditPolicies() {
 installEditPolicy(
 EditPolicy.LAYOUT_ROLE,
 new GraphXYLayoutEditPolicy());
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction40

Node/NodeEditPart Revisited

 Nodes notify changes to listeners : Observable

public class Node extends Observable {
 …
 public void setConstraint(Rectangle constraint) {
 this.constraint = constraint;
 setChanged();
 notifyObservers();
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction41

Node/NodeEditPart Revisited

 NodeEditParts should respond to the changes of the Node :
Observer

public class NodeEditPart
extends AbstractGraphicalEditPart implements Observer {
 …
 public void activate() {
 if (!isActive()) ((Node)getModel()).addObserver(this);
 super.activate();
 }
 public void deactivate() {
 if (isActive()) ((Node)getModel()).deleteObserver(this);
 super.deactivate();
 }
 public void update(Observable arg0, Object arg1) {
 refreshVisuals();
 }

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction42

Selectable, Moveable, Resizable Nodes

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction43

Undo and Redo Support

 Add an ActionRegistry : container for Editor Actions
 Implement and register the EditorActionContributor
 Keep track of the Command events : CommandStackListener
 Adapt the Editor to the CommandStack class

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction44

Add the ActionRegistry
public class GraphEditor extends EditorPart {
 private ActionRegistry actionRegistry;
 …
 public void init(IEditorSite site, IEditorInput input)
 throws PartInitException {
 …
 initActionRegistry();
 }
 private void initActionRegistry() {
 actionRegistry = new ActionRegistry();
 actionRegistry.registerAction(new UndoAction(this));
 actionRegistry.registerAction(new RedoAction(this));
 }
 public ActionRegistry getActionRegistry() {
 return actionRegistry;
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction45

Register the ActionBarContributor

 Defines the actions for the editor
 Registered in the plugin.xml

<plugin
 …
 <extension point = "org.eclipse.ui.editors">
 <editor
 id = "org.jbpm.graph.ui.editor.GraphEditor“
 …
 class = "org.jbpm.graph.ui.editor.GraphEditor"
 contributorClass=
 "org.jbpm.graph.ui.editor.ActionBarContributor" >
 </editor>
 </extension>
</plugin>

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction46

Implement the ActionBarContributor

public class ActionBarContributor
extends EditorActionBarContributor {
 public void setActiveEditor(IEditorPart targetEditor) {
 IActionBars actionBars = getActionBars();
 if (actionBars == null) return;
 String undoId = ActionFactory.UNDO.getId();
 String redoId = ActionFactory.REDO.getId();
 ActionRegistry actionRegistry =
 ((GraphEditor)targetEditor).getActionRegistry();
 actionBars.setGlobalActionHandler(
 undoId, actionRegistry.getAction(undoId));
 actionBars.setGlobalActionHandler(
 redoId, actionRegistry.getAction(redoId));
 actionBars.updateActionBars();
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction47

Define a CommandStackListener

public class GraphEditorListener
implements CommandStackListener {
 private ActionRegistry actionRegistry;
 public GraphEditorListener(
 ActionRegistry registry) {
 this.actionRegistry = registry;
 }
 public void commandStackChanged(EventObject event) {
 Iterator iterator = actionRegistry.getActions();
 while (iterator.hasNext()) {
 Object action = iterator.next();
 if (action instanceof UpdateAction)
 ((UpdateAction)action).update();
 }
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction48

Add a CommandStackListener

 Update the actions in the registry whenever the
CommandStack’s state changes

public class GraphEditor extends EditorPart {
 …
 public void init(IEditorSite site, IEditorInput input)
 throws PartInitException {
 …
 initGraphEditorListener();
 }
 private void initGraphEditorListener() {
 editDomain.getCommandStack().addCommandStackListener(
 new GraphEditorListener(actionRegistry));
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction49

Adapt the Editor to CommandStack

 Using the IAdaptable interface extended by IEditorPart

public class GraphEditor extends EditorPart {
 …
 public Object getAdapter(Class adapter) {
 if (adapter == CommandStack.class) {
 return editDomain.getCommandStack();
 }
 return super.getAdapter(adapter);
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction50

Undo and Redo Demo

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction51

Showing Connections

 The Model Class : Connection
 The Controller and Graphical Representation :

 ConnectionEditPart

 PolyLineConnection

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction52

Add the Connection Model Class
public class Connection {
 private Node source, target;
 public Node getSource() { return source; }
 public void setSource(Node source) {
 if (this.source != null)
 source.removeSourceConnection(this);
 this.source = source;
 source.addSourceConnection(this);
 }
 public Node getTarget() { return target; }
 public void setTarget(Node target) {
 if (this.target != null)
 target.removeTargetConnection(this);
 this.target = target;
 target.addTargetConnection(this);
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction53

Update the Node Model Class

public class Node extends Observable {
 …
 private List sourceConnections, targetConnections;
 …
 public List getSourceConnections() {
 if (sourceConnections == null)
 sourceConnections = new ArrayList();
 return sourceConnections;
 }
 public List getTargetConnections() {
 if (targetConnections == null)
 targetConnections = new ArrayList();
 return targetConnections;
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction54

Update the Node Model Class (ctn’d)

public class Node extends Observable {
 …
 public void addSourceConnection(Connection connection) {
 getSourceConnections().add(connection);
 }
 public void addTargetConnection(Connection connection) {
 getTargetConnections().add(connection);
 }
 public void removeSourceConnection(Connection connection) {
 getSourceConnections().remove(connection);
 }
 public void removeTargetConnection(Connection connection) {
 getTargetConnections().remove(connection);
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction55

Update the ContentProvider
public class ContentProvider {
 …
 public Graph newSampleGraph() {
 Graph result = new Graph();
 …
 newConnection(first, second);
 newConnection(first, third);
 newConnection(second, third);
 return result;
 }
 private Connection newConnection(Node source, Node target) {
 Connection result = new Connection();
 result.setSource(source);
 result.setTarget(target);
 return result;
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction56

Define the ConnectionEditPart

 Join source and target EditParts
 Figure is typically a line between the two nodes

public class ConnectionEditPart
extends AbstractConnectionEditPart {
 public ConnectionEditPart(Connection connection) {
 setModel(connection);
 }
 protected void createEditPolicies() {}
 protected IFigure createFigure() {
 return new PolylineConnection();
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction57

GraphicalEditPartFactory Revisited

public class GraphicalEditPartFactory
implements EditPartFactory {
 public EditPart createEditPart(
 EditPart context, Object model) {
 if (model instanceof Graph) {
 return new GraphEditPart((Graph)model);
 } else if (model instanceof Node) {
 return new NodeEditPart((Node)model);
 } else if (model instanceof Connection){
 return new ConnectionEditPart((Connection)model);
 } else {
 return null;
 }
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction58

NodeEditPart Revisited

 Connections can exist without a model
 Connections cannot exist without a source and a target
 Burden of obtaining the source and target connections is on the

NodeEditPart and not on the Node model

public class NodeEditPart
extends AbstractGraphicalEditPart implements Observer {
 …
 protected List getModelSourceConnections() {
 return ((Node)getModel()).getSourceConnections();
 }
 protected List getModelTargetConnections() {
 return ((Node)getModel()).getTargetConnections();
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction59

Nodes and Connections

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction60

Creating Nodes and Connections

 Splitting the Canvas : SashForm and PaletteViewer
 Adding the Palette : PaletteRoot and its Tools
 Create Nodes : NodeCreateCommand
 Create Connections :

 GraphicalNodeEditPolicy

 ConnectionCreateCommand

 ConnectionAnchor

 NodeEditPart interface

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction61

GraphEditor Revisited Once More

 Refactor createPartControl
 Add SashForm to parent

 Add PaletteViewer and GraphViewer

public class GraphEditor extends EditorPart {
 …
 public void createPartControl(Composite parent) {
 SashForm form = new SashForm(parent, SWT.HORIZONTAL);
 createPaletteViewer(form);
 createGraphViewer(form);
 form.setWeights(new int[] { 15, 85 });
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction62

GraphEditor Revisited Once More (ctn’d)

public class GraphEditor extends EditorPart {
 …
 private void createPaletteViewer(Composite parent) {
 PaletteViewer viewer = new PaletteViewer();
 viewer.createControl(parent);
 editDomain.setPaletteViewer(viewer);
 editDomain.setPaletteRoot(new PaletteRoot());
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction63

GraphEditor Revisited Once More (ctn’d)

public class GraphEditor extends EditorPart {
 …
private void createGraphViewer(Composite parent) {
 ScrollingGraphicalViewer viewer =
 new ScrollingGraphicalViewer();
 viewer.setRootEditPart(new ScalableFreeformRootEditPart());
 viewer.createControl(parent);
 viewer.getControl().setBackground(ColorConstants.white);
 viewer.setEditPartFactory(new GraphicalEditPartFactory());
 viewer.setContents(
 ContentProvider.INSTANCE.newSampleGraph());
 editDomain.addViewer(viewer);
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction64

Editor with Empty Palette

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction65

Populate the Palette : PaletteRoot

public class GraphPalette extends PaletteRoot {
 public GraphPalette() {
 PaletteGroup group = new PaletteGroup("Graph Controls");
 SelectionToolEntry entry = new SelectionToolEntry();
 group.add(entry);
 setDefaultEntry(entry);
 group.add(new PaletteSeparator());
 group.add(new CreationToolEntry(
 “Node”, “Creates a new node.”,
 new NodeFactory(), null, null));
 group.add(new ConnectionCreationToolEntry(
 “Connection”, “Creates a new connection.”,
 new ConnectionFactory(), null, null));
 add(group);
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction66

Populate the Palette : CreationFactory

public class NodeFactory implements CreationFactory {
 public Object getNewObject() { return new Node(); }
 public Object getObjectType() { return Node.class; }
}

public class ConnectionFactory implements CreationFactory {
 public Object getNewObject() { return new Connection(); }
 public Object getObjectType() { return Connection.class; }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction67

Populate the Palette : GraphEditor

public class GraphEditor extends EditorPart {
 …
 private void createPaletteViewer(Composite parent)
{
 PaletteViewer viewer = new PaletteViewer();
 viewer.createControl(parent);
 editDomain.setPaletteViewer(viewer);
 editDomain.setPaletteRoot(new GraphPalette());
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction68

Editor With Populated Palette

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction69

Creating New Nodes

 Define NodeCreateCommand
 Implement getCreateCommand
 Make Graph/GraphEditPart Observer/Observable

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction70

Define NodeCreateCommand
public class NodeCreateCommand extends Command {
 …
 private Node node;
 private Rectangle constraint;
 private Graph parent;
 public void execute() {
 setNodeConstraint();
 setNodeName();
 parent.addNode(node);
 }
 private void setNodeName() {
 node.setName(parent.getNextNodeName());
 }
 private void setNodeConstraint() {
 if (constraint !=
null)node.setConstraint(constraint);
 }
 …

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction71

Define NodeCreateCommand (ctn’d)

public class NodeCreateCommand extends Command {
 private static final Dimension INITIAL_NODE_DIMENSION =
 new Dimension(65, 35);
 …
 public void undo() {parent.removeNode(node);}
 public void setNode(Node node) {this.node = node;}
 public void setLocation(Point location) {
 this.constraint = new Rectangle(
 location, INITIAL_NODE_DIMENSION);
 }
 public void setParent(Graph parent) {
 this.parent = parent;
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction72

Graph Revisited Again
public class Graph {
 …
 public String getNextNodeName() {
 int runner = 1;
 while (true) {
 String candidate = "node" + runner;
 if (getNodeByName(candidate) == null) return candidate;
 runner ++;
 }
 }
 private Node getNodeByName(String candidate) {
 for (int i = 0; i < getNodes().size(); i++)
 if (candidate.equals(((Node)getNodes().get(i)).getName()))
 return (Node)getNodes().get(i);
 return null;
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction73

GraphXYLayoutPolicy Revisited

 Implement getCreateCommand
 Only handle requests to create Nodes

public class GraphXYLayoutEditPolicy
extends XYLayoutEditPolicy {
 …
 protected Command getCreateCommand(CreateRequest request) {
 if (request.getNewObjectType().equals(Node.class)) {
 NodeCreateCommand result = new NodeCreateCommand();
 result.setLocation(request.getLocation());
 result.setNode((Node)request.getNewObject());
 result.setParent((Graph)getHost().getModel());
 return result;
 }
 return null;
 }

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction74

Graph Revisited Once More

public class Graph extends Observable {
 …
 public void addNode(Node node) {
 getNodes().add(node);
 setChanged();
 notifyObservers();
 }
 public void removeNode(Node node) {
 getNodes().remove(node);
 setChanged();
 notifyObservers();
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction75

Editor With Some Extra Nodes

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction76

Creating New Connections

 Define ConnectionCreateCommand
 Define NodeGraphicalNodeEditPolicy

 Implement getConnectionCreateCommand

 Implement getConnectionCompleteCommand
 Make connection changes observable
 Install NodeGraphicalNodeEditPolicy
 Make our NodeEditPart implement the

org.eclipse.gef.NodeEditPart interface
 Obtaining the ConnectionAnchor

 Observe the connection changes of the model
 Get rid of the ContentProvider

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction77

Define ConnectionCreateCommand

public class ConnectionCreateCommand extends Command {
 private Node source;
 private Node target;
 private Connection connection;
 public void setSource(Node source) {
 this.source = source;
 }
 public void setTarget(Node target) {
 this.target = target;
 }
 public void setConnection(Connection connection) {
 this.connection = connection;
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction78

ConnectionCreateCommand (ctn’d)

public class ConnectionCreateCommand extends Command {
 …
 public boolean canExecute() {
 return source != null && target != null;
 }
 public void execute() {
 connection.setSource(source);
 connection.setTarget(target);
 }
 public void undo() {
 connection.setSource(null);
 connection.setTarget(null);
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction79

Define NodeGraphicalNodeEditPolicy

public class NodeGraphicalNodeEditPolicy
extends GraphicalNodeEditPolicy {
 protected Command getConnectionCreateCommand(
 CreateConnectionRequest request) {
 ConnectionCreateCommand result =
 new ConnectionCreateCommand();
 result.setSource((Node)getHost().getModel());
 result.setConnection((Connection)request.getNewObject());
 request.setStartCommand(result);
 return result;
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction80

Define NodeGraphicalNodeEditPolicy (ctn’d)

public class NodeGraphicalNodeEditPolicy
extends GraphicalNodeEditPolicy {
 …
 protected Command getConnectionCompleteCommand(
 CreateConnectionRequest request) {
 ConnectionCreateCommand result =
 (ConnectionCreateCommand)request.getStartCommand();
 result.setTarget((Node)getHost().getModel());
 return result;
 }
 … //Stubs for the remaining methods
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction81

Node Revisited Again

public class Node extends Observable {
 …
 public void addSourceConnection(Connection connection) {
 getSourceConnections().add(connection);
 notifyObservers();
 }
 public void addTargetConnection(Connection connection) {
 getTargetConnections().add(connection);
 notifyObservers();
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction82

Node Revisited Again (ctn’d)

public class Node extends Observable {
 …
 public void removeSourceConnection(Connection connection) {
 getSourceConnections().remove(connection);
 notifyObservers();
 }
 public void removeTargetConnection(Connection connection) {
 getTargetConnections().remove(connection);
 notifyObservers();
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction83

NodeEditPart Revisited Again

 Installation of the NodeGraphicalNodeEditPolicy

public class NodeEditPart
extends AbstractGraphicalEditPart
implements Observer {
 …
 protected void createEditPolicies() {
 installEditPolicy(
 EditPolicy.GRAPHICAL_NODE_ROLE,
 new NodeGraphicalNodeEditPolicy());
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction84

NodeEditPart Revisited Again (ctn’d)

 Observing connection model changes

public class NodeEditPart
extends AbstractGraphicalEditPart
implements Observer {
 …
 public void update(Observable observable, Object message) {
 refreshVisuals();
 refreshSourceConnections();
 refreshTargetConnections();
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction85

NodeEditPart Revisited Again (ctn’d)

public class NodeEditPart extends AbstractGraphicalEditPart
implements Observer, org.eclipse.gef.NodeEditPart {
 …
 public ConnectionAnchor getSourceConnectionAnchor(
 ConnectionEditPart connection) {
 return ((NodeFigure)getFigure()).getConnectionAnchor();
 }
 public ConnectionAnchor getTargetConnectionAnchor(
 ConnectionEditPart connection) {
 return ((NodeFigure)getFigure()).getConnectionAnchor();
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction86

NodeEditPart Revisited Again (ctn’d)

public class NodeEditPart extends AbstractGraphicalEditPart
implements Observer, org.eclipse.gef.NodeEditPart {
 …
 public ConnectionAnchor getSourceConnectionAnchor(
 Request request) {
 return ((NodeFigure)getFigure()).getConnectionAnchor();
 }
 public ConnectionAnchor getTargetConnectionAnchor(
 Request request) {
 return ((NodeFigure)getFigure()).getConnectionAnchor();
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction87

NodeFigure Revisited

 Create the connection anchor lazily

public class NodeFigure extends Figure {
 private ConnectionAnchor connectionAnchor;
 …
 public ConnectionAnchor getConnectionAnchor() {
 if (connectionAnchor == null) {
 connectionAnchor = new ChopboxAnchor(this);
 }
 return connectionAnchor;
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction88

Eliminate ContentProvider

 Delete the ContentProvider class
 Modify the createGraphViewer method in class GraphEditor

public class GraphEditor extends EditorPart {
 …
 private void createGraphViewer(Composite parent) {
 ScrollingGraphicalViewer viewer =
 new ScrollingGraphicalViewer();
 viewer.setRootEditPart(new ScalableFreeformRootEditPart());
 viewer.createControl(parent);
 viewer.getControl().setBackground(ColorConstants.white);
 viewer.setEditPartFactory(new GraphicalEditPartFactory());
 viewer.setContents(new Graph());
 editDomain.addViewer(viewer);
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction89

GraphEditor With Connection Support

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction90

Delete Support

 Include DeleteAction in ActionRegistry
 Selection Support :

 SelectionProvider

 SelectionListener
 Update ActionBarContributor
 Deleting Nodes :

 NodeDeleteCommand

 NodeComponentEditPolicy
 Deleting Connections :

 ConnectionDeleteCommand

 ConnectionEditPolicy

 ConnectionEndpointEditPolicy

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction91

ActionRegistry Revisited

public class GraphEditor extends EditorPart {
 private ActionRegistry actionRegistry;
 …
 private void initActionRegistry() {
 actionRegistry = new ActionRegistry();
 actionRegistry.registerAction(new UndoAction(this));
 actionRegistry.registerAction(new RedoAction(this));
 actionRegistry.registerAction(
 new DeleteAction((WorkbenchPart)this));
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction92

GraphViewer Is SelectionProvider

public class GraphEditor extends EditorPart {
 …
 private void createGraphViewer(Composite parent) {
 ScrollingGraphicalViewer viewer =
 new ScrollingGraphicalViewer();
 viewer.setRootEditPart(new ScalableFreeformRootEditPart());
 viewer.createControl(parent);
 viewer.getControl().setBackground(ColorConstants.white);
 viewer.setEditPartFactory(new GraphicalEditPartFactory());
 viewer.setContents(new Graph());
 editDomain.addViewer(viewer);
 getSite().setSelectionProvider(viewer);
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction93

Define the SelectionListener

public class GraphEditorListener
implements CommandStackListener, ISelectionListener {
 …
 public void commandStackChanged(EventObject event) {
 updateActions();
 }
 public void selectionChanged(
 IWorkbenchPart part, ISelection selection) {
 updateActions();
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction94

Define the SelectionListener (ctn’d)

public class GraphEditorListener
implements CommandStackListener, ISelectionListener {
 …
 private void updateActions() {
 Iterator iterator = actionRegistry.getActions();
 while (iterator.hasNext()) {
 Object action = iterator.next();
 if (action instanceof UpdateAction)
 ((UpdateAction)action).update();
 }
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction95

Add the SelectionListener

public class GraphEditor extends EditorPart {
 …
 private void initGraphEditorListener() {
 GraphEditorListener graphEditorListener =
 new GraphEditorListener(actionRegistry));
 ISelectionService selectionService =
 getSite().getWorkbenchWindow().getSelectionService();
 editDomain.getCommandStack().addCommandStackListener(
 graphEditorListener);
 selectionService.addSelectionListener(
 graphEditorListener);
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction96

Update ActionbarContributor

public class ActionBarContributor
extends EditorActionBarContributor {
 public void setActiveEditor(IEditorPart targetEditor) {
 …
 String deleteId = ActionFactory.DELETE.getId();
 actionBars.setGlobalActionHandler(
 deleteId, actionRegistry.getAction(deleteId));
 actionBars.updateActionBars();
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction97

Define NodeDeleteCommand
public class NodeDeleteCommand extends Command {
 private Node node;
 private Graph graph;
 private List connections;
 private Map connectionSources, connectionTargets;
 public void setNode(Node node) { this.node = node; }
 public void setGraph(Graph graph) { this.graph = graph; }
 public void execute() {
 detachConnections();
 graph.removeNode(node);
 }
 public void undo() {
 graph.addNode(node);
 reattachConnections();
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction98

Define NodeDeleteCommand (ctn’d)
public class NodeDeleteCommand extends Command {
 …
 private void detachConnections() {
 connections = new ArrayList();
 connectionSources = new HashMap();
 connectionTargets = new HashMap();
 connections.addAll(node.getSourceConnections());
 connections.addAll(node.getTargetConnections());
 for (int i = 0; i < connections.size(); i++) {
 Connection connection = (Connection)connections.get(i);
 connectionSources.put(connection,connection.getSource());
 connectionTargets.put(connection,connection.getTarget());
 connection.setSource(null);
 connection.setTarget(null);
 }
 }
 …

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction99

Define NodeDeleteCommand (ctn’d)

public class NodeDeleteCommand extends Command {
 …
 private void reattachConnections() {
 for (int i = 0; i < connections.size(); i++) {
 Connection connection = (Connection)connections.get(i);
 connection.setSource(
 (Node)connectionSources.get(connection));
 connection.setTarget(
 (Node)connectionTargets.get(connection));
 }
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction100

Define NodeComponentEditPolicy

 Override the createDeleteCommand method

public class NodeComponentEditPolicy
extends ComponentEditPolicy {
 protected Command createDeleteCommand(GroupRequest request) {
 NodeDeleteCommand deleteCommand = new NodeDeleteCommand();
 deleteCommand.setGraph(
 (Graph)getHost().getParent().getModel());
 deleteCommand.setNode((Node)getHost().getModel());
 return deleteCommand;
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction101

Install NodeComponentEditPolicy

 Responsibility of NodeEditPart

public class NodeEditPart extends … {
 …
 protected void createEditPolicies() {
 …
 installEditPolicy(
 EditPolicy.COMPONENT_ROLE,
 new NodeComponentEditPolicy());
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction102

Selecting Connections

 Install ConnectionEndpointEditPolicy
 Primary SelectionEditPolicy for showing focus on connections

 All ConnectionEditParts need one

public class ConnectionEditPart
extends AbstractConnectionEditPart {
 …
 protected void createEditPolicies() {
 installEditPolicy(
 EditPolicy.CONNECTION_ENDPOINTS_ROLE,
 new ConnectionEndpointEditPolicy());
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction103

Define ConnectionDeleteCommand
public class ConnectionDeleteCommand extends Command {
 private Node source, target;
 private Connection connection;
 public void setConnection(Connection connection) {
 this.connection = connection;
 }
 public void execute() {
 if (source == null) source = connection.getSource();
 if (target == null) target = connection.getTarget();
 connection.setSource(null);
 connection.setTarget(null);
 }
 public void undo() {
 connection.setSource(source);
 connection.setTarget(target);
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction104

Define ConnectionEditPolicy

 Default model-based EditPolicy for Connections
 Only knows about the model and its basic operations

 Single default operation : DELETE

public class ConnectionEditPolicy
extends org.eclipse.gef.editpolicies.ConnectionEditPolicy {
 protected Command getDeleteCommand(GroupRequest request) {
 ConnectionDeleteCommand result =
 new ConnectionDeleteCommand();
 result.setConnection((Connection)getHost().getModel());
 return result;
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction105

Install ConnectionEditPolicy

public class ConnectionEditPart
extends AbstractConnectionEditPart {
 …
 protected void createEditPolicies() {
 installEditPolicy(
 EditPolicy.CONNECTION_ROLE,
 new ConnectionEditPolicy());
 installEditPolicy(
 EditPolicy.CONNECTION_ENDPOINTS_ROLE,
 new ConnectionEndpointEditPolicy());
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction106

Basic Functional Graph Editor

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction107

What’s Next?

 Saving and loading the model
 By serialization or with XML representation

 Provide an outline view
 Support for a grid, zooming, guides, …
 Make actions available through context menu
 Provide an extension point to plug-in custom node types

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction108

Final Thoughts

 Steep and long learning curve
 Starting from scratch is not easy

 No books available

 Starting small is mandatory to fully understand
 Very rich framework

 Lots of predefined functionality

 Do very complex things with almost no code
 Use code and javadocs to find details

 Overwhelming for newbie

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction109

Questions?

