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Developing an Editor for Directed Graphs

An Introduction to the Eclipse Graphical 
Editing Framework
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What is GEF?

 Graphical Editing Framework
 Create a Rich Graphical Editor
 Consists of 2 plug-in

 Draw2D : layout and rendering toolkit for displaying graphics

 GEF : framework using the old Smalltalk MVC principles
 MVC : Model, Figure, EditPart

 Input events are translated to requests

 EditPart has a chain-of-responsibility of so-called EditPolicies

 EditPolicies translate the requests into GEF Commands when appropriate

 Commands get executed and result in model changes

 Model is observed by EditPart

 When model changes, EditPart refreshes the view
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Typical GEF MVC Interactions
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An Empty Graph Editor

 Eclipse Plug-in with Editor
 Add a GraphicalViewer
 Add a RootEditPart
 Define the Graph model
 Define the GraphEditPart
 Define and Add the EditPartFactory
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An Empty Editor for Directed Graphs
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Eclipse Plug-in with Editor
<plugin
   id="org.jbpm.graph.ui"
   name="JBoss jBPM Graph Designer"
   version=“1.0.0"
   provider-name="JBoss, a Division of Red Hat"
   class="org.jbpm.graph.ui.GraphPlugin">
   …
 <extension point = "org.eclipse.ui.editors">
    <editor
        id = "org.jbpm.graph.ui.editor.GraphEditor"
        name = "First jBPM Graph Editor"
        icon = "icons/full/obj16/par_obj.gif"
        extensions = "par"
        class = "org.jbpm.graph.ui.editor.GraphEditor" >
    </editor>
  </extension>  
</plugin>
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Eclipse Plug-in with Editor

public class GraphEditor extends EditorPart {
  …
  public void init(IEditorSite site, IEditorInput input)
      throws PartInitException {
    setSite(site);
    setInput(input);
  }
  …
  public void createPartControl(Composite parent) {
    Label label = new Label(parent, SWT.NONE);
    label.setText("Hello from first jBPM Graph Editor!");
  }
  …
}
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Eclipse Plug-in with Editor



© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction12

Add an EditPartViewer

 GraphicalViewer is special kind of EditPartViewer
 An adapter on an SWT Control that manages the EditPart
 Populated by setting its contents

public void createPartControl(Composite parent) {
  ScrollingGraphicalViewer viewer = 
    new ScrollingGraphicalViewer();
  viewer.createControl(parent);
  
viewer.getControl().setBackground(ColorConstants.white);
}
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Add an EditPartViewer
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Add the RootEditPart

 Bridges the gap between the EditPartViewer and its contents
 Can provide for all kinds of services : zooming, freeform figures, 

etc.

public void createPartControl(Composite parent) {
  ScrollingGraphicalViewer viewer = 
    new ScrollingGraphicalViewer();
  viewer.createControl(parent);
  viewer.setRootEditPart(new ScalableFreeformRootEditPart());
  viewer.getControl().setBackground(ColorConstants.white);
}

http://127.0.0.1:59294/help/topic/org.eclipse.gef.doc.isv/reference/api/org/eclipse/gef/EditPartViewer.html
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Add the EditPartFactory

 A factory for creating new EditParts
 Used when EditPart of EditPartViewer wants to create a new 

EditPart
 Used when setting contents of EditPartViewer

public void createPartControl(Composite parent) {
  …
  viewer.setRootEditPart(new ScalableFreeformRootEditPart());
  viewer.getControl().setBackground(ColorConstants.white);
  viewer.setEditPartFactory(new GraphEditPartFactory());
  viewer.setContents(new Graph());
}
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Define the Graph Model

 Initial simplistic model
 Used as the contents of the GraphicalViewer

public class Graph {}
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Define the GraphEditPartFactory

 Only Graph objects are considered
 Return a GraphEditPart instance

public class GraphicalEditPartFactory 
    implements EditPartFactory {

  public EditPart createEditPart(
      EditPart context, Object model) {
    if (model instanceof Graph) {
      return new GraphEditPart((Graph)model); 
    } else {
      return null;
    }
  }
}
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Define the GraphEditPart
public class GraphEditPart 
    extends AbstractGraphicalEditPart {

  public GraphEditPart(Graph graph) {
    setModel(graph);
  }

  protected IFigure createFigure() {
    FreeformLayer layer = new FreeformLayer();
    layer.setLayoutManager(new FreeformLayout());
    layer.setBorder(new LineBorder(1));
    return layer;
  }

  protected void createEditPolicies() {}

}
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Editor Showing Empty Graph
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Adding the Nodes

 The Model Class : Node
 Graphical Representation : NodeFigure
 The Controller : NodeEditPart
 Update the GraphEditPartFactory
 Update the GraphEditPart
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Adding Nodes to the Editor
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Define the Model : Node

public class Node {
  Rectangle constraint;
  String name;
  public Rectangle getConstraint() {
    return constraint;
  }
  public void setConstraint(Rectangle constraint) {
    this.constraint = constraint;
  }
  public String getName() {
    return name;
  }
  public void setName(String name) {
    this.name = name;
  }
}
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Define the Model : Graph Revisited

 Graphs manage a list of nodes

public class Graph {
  List nodes;
  public List getNodes() {
    if (nodes == null) nodes = new ArrayList();
    return nodes;
  }
  public void addNode(Node node) {
    getNodes().add(node);
  }
}
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Define the Model : ContentProvider

public void createPartControl(Composite parent) {
  …
  viewer.setContents(
    ContentProvider.INSTANCE.newSampleGraph());
}
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ContentProvider Continued

public class ContentProvider {
  public static final ContentProvider INSTANCE = 
    new ContentProvider();
  public Graph newSampleGraph() {
    Graph result = new Graph();
    result.addNode(newNode(200, 150, 65, 35, “first”));
    result.addNode(newNode(300, 250, 65, 35, “second”));
    result.addNode(newNode(100, 300, 65, 35, "third”));
    return result;
  }
  …
}
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ContentProvider Continued

public class ContentProvider {
  public static final ContentProvider INSTANCE = 
    new ContentProvider();
  …
  private Node newNode(
      int x, int y, int width, int height, String name) {
    Node result = new Node();
    result.setConstraint(
      new Rectangle(new Point(x, y), 
      new Dimension(width, height)));
    result.setName(name);
    return result;
  }
}
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Define the View : NodeFigure
 Mostly using the Draw2D framework

public class NodeFigure extends Figure {
  private Label label;
  private RectangleFigure rectangle;
  public NodeFigure() {
    setLayoutManager(new XYLayout());
    rectangle = new RectangleFigure();
    add(rectangle);
    label = new Label();
    add(label);
  }
  public Label getLabel() {
    return label;
  }
  …
}



© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction28

Define the View : NodeFigure (ct’d)

public class NodeFigure extends Figure {
  …
  public void paintFigure(Graphics g) {
    Rectangle r = getBounds().getCopy();
    setConstraint(
      rectangle, new Rectangle(0, 0, r.width, r.height));

    setConstraint(
      label, new Rectangle(0, 0, r.width, r.height));

    rectangle.invalidate();
    label.invalidate();
  }
}
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Define the Controller : NodeEditPart

public class NodeEditPart extends AbstractGraphicalEditPart {
  public NodeEditPart(Node node) { setModel(node); }
  protected IFigure createFigure() { return new 
NodeFigure(); }
  protected void createEditPolicies() {}
  public void refreshVisuals() {
    NodeFigure figure = (NodeFigure)getFigure();
    Node node = (Node)getModel();
    GraphEditPart parent = (GraphEditPart)getParent();
    figure.getLabel().setText(node.getName());
    Rectangle r = new Rectangle(node.getConstraint());
    parent.setLayoutConstraint(this, figure, r);
  }
}
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GraphEditPartFactory Revisited

public class GraphicalEditPartFactory 
    implements EditPartFactory {

  public EditPart createEditPart(
      EditPart context, Object model) {
    if (model instanceof Graph) {
      return new GraphEditPart((Graph)model); 
    } else if (model instanceof Node) {
      return new NodeEditPart((Node)model);
    } else {
      return null;
    }
  }

}
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GraphEditPart Revisited

public class GraphEditPart 
extends AbstractGraphicalEditPart {
  public GraphEditPart(Graph graph) {
    setModel(graph);
  }
  protected List getModelChildren() {
    return ((Graph)getModel()).getNodes();
  }
  protected IFigure createFigure() {
    FreeformLayer layer = new FreeformLayer();
    layer.setLayoutManager(new FreeformLayout());
    layer.setBorder(new LineBorder(1));
    return layer;
  }
  protected void createEditPolicies() {}
}
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Adding the Nodes : the Result
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Doing Things With Nodes

 Adding the Spine : EditDomain
 Transform Requests into Commands : EditPolicy
 Implementing Commands to Modify the Model
 Having the EditParts React to Model Changes : Observer
 Undo and Redo Support: ActionRegistry and 

ActionBarContributor
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The Node Move/Resize Scenario
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GEF’s Spine : the EditDomain Class

 State of a ‘GEF Application’
 CommandStack

 One or more EditPartViewers

 Active Tool
 Tied with an Eclipse IEditorPart
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Adding the EditDomain

public class GraphEditor extends EditorPart {
  private EditDomain editDomain; 
  … 
  public void init(IEditorSite site, IEditorInput input)
      throws PartInitException {
    …
    initEditDomain()
  }
  private void initEditDomain() {
    editDomain = new DefaultEditDomain(this);
  }
  public void createPartControl(Composite parent) {
    …
    editDomain.addViewer(viewer);
  }
}
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NodeChangeConstraintCommand

public class NodeChangeConstraintCommand extends Command {
  private Rectangle newConstraint;
  private Rectangle oldConstraint;
  private Node node;
  public void execute() {
    if (oldConstraint == null)
      oldConstraint = new Rectangle(node.getConstraint());
    node.setConstraint(newConstraint);
  }
  public void undo() {node.setConstraint(oldConstraint);}
  public void setNewConstraint(Rectangle newConstraint) {
    this.newConstraint = newConstraint;
  }
  public void setNode(Node node) { this.node = node; }
}
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GraphXYLayoutEditPolicy

public class GraphXYLayoutEditPolicy 
extends XYLayoutEditPolicy {
  protected Command createChangeConstraintCommand(
      EditPart child, Object constraint) {
    NodeChangeConstraintCommand changeConstraintCommand = 
      new NodeChangeConstraintCommand();
    changeConstraintCommand.setNode((Node)child.getModel());
    changeConstraintCommand.setNewConstraint(
      (Rectangle)constraint);
    return changeConstraintCommand;
  }
  // We use a stub implementation for the other methods
  …
}
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GraphEditPart Revisited Again

 Editparts maintain lists of EditPolicies
 Chain of responsability enabling certain commands

public class GraphEditPart 
extends AbstractGraphicalEditPart {
  …
  protected void createEditPolicies() {
    installEditPolicy(
      EditPolicy.LAYOUT_ROLE, 
      new GraphXYLayoutEditPolicy());
  }
}
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Node/NodeEditPart Revisited

 Nodes notify changes to listeners : Observable

public class Node extends Observable {
  …
  public void setConstraint(Rectangle constraint) {
    this.constraint = constraint;
    setChanged();
    notifyObservers();
  }
  …
}
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Node/NodeEditPart Revisited

 NodeEditParts should respond to the changes of the Node : 
Observer

public class NodeEditPart 
extends AbstractGraphicalEditPart implements Observer {
  …
  public void activate() {
    if (!isActive()) ((Node)getModel()).addObserver(this);
    super.activate();
  }
  public void deactivate() {
    if (isActive()) ((Node)getModel()).deleteObserver(this);
    super.deactivate();
  }
  public void update(Observable arg0, Object arg1) {
    refreshVisuals();
  }
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Selectable, Moveable, Resizable Nodes
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Undo and Redo Support

 Add an ActionRegistry : container for Editor Actions
 Implement and register the EditorActionContributor
 Keep track of the Command events : CommandStackListener
 Adapt the Editor to the CommandStack class
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Add the ActionRegistry
public class GraphEditor extends EditorPart {
  private ActionRegistry actionRegistry;
  …
  public void init(IEditorSite site, IEditorInput input)
  throws PartInitException {
    …
    initActionRegistry();
  }
  private void initActionRegistry() {
    actionRegistry = new ActionRegistry();
    actionRegistry.registerAction(new UndoAction(this));
    actionRegistry.registerAction(new RedoAction(this));
  }
  public ActionRegistry getActionRegistry() {
    return actionRegistry;
  }
}
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Register the ActionBarContributor

 Defines the actions for the editor
 Registered in the plugin.xml

<plugin
  …
  <extension point = "org.eclipse.ui.editors">
    <editor
      id = "org.jbpm.graph.ui.editor.GraphEditor“
      …
      class = "org.jbpm.graph.ui.editor.GraphEditor" 
      contributorClass=
        "org.jbpm.graph.ui.editor.ActionBarContributor" >
    </editor>
  </extension>      
</plugin>
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Implement the ActionBarContributor

public class ActionBarContributor 
extends EditorActionBarContributor {
  public void setActiveEditor(IEditorPart targetEditor) {
    IActionBars actionBars = getActionBars();
    if (actionBars == null) return;
    String undoId = ActionFactory.UNDO.getId();
    String redoId = ActionFactory.REDO.getId();
    ActionRegistry actionRegistry = 
      ((GraphEditor)targetEditor).getActionRegistry();
    actionBars.setGlobalActionHandler(
      undoId, actionRegistry.getAction(undoId));
    actionBars.setGlobalActionHandler(
      redoId, actionRegistry.getAction(redoId));
    actionBars.updateActionBars();
  }
}



© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction47

Define a CommandStackListener

public class GraphEditorListener 
implements CommandStackListener {
  private ActionRegistry actionRegistry;
  public GraphEditorListener(
      ActionRegistry registry) {
    this.actionRegistry = registry;
  }
  public void commandStackChanged(EventObject event) {
    Iterator iterator = actionRegistry.getActions();
    while (iterator.hasNext()) {
      Object action = iterator.next();
      if (action instanceof UpdateAction)
        ((UpdateAction)action).update();
    }
  }
}
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Add a CommandStackListener

 Update the actions in the registry whenever the 
CommandStack’s state changes

public class GraphEditor extends EditorPart {
  …
  public void init(IEditorSite site, IEditorInput input)
  throws PartInitException {
    …
    initGraphEditorListener();
  }
  private void initGraphEditorListener() {
    editDomain.getCommandStack().addCommandStackListener(
      new GraphEditorListener(actionRegistry)); 
  }
}
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Adapt the Editor to CommandStack

 Using the IAdaptable interface extended by IEditorPart

public class GraphEditor extends EditorPart {
  …
  public Object getAdapter(Class adapter) {
    if (adapter == CommandStack.class) {
      return editDomain.getCommandStack();
    }
    return super.getAdapter(adapter);
  }
}



© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction50

Undo and Redo Demo
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Showing Connections

 The Model Class : Connection
 The Controller and Graphical Representation : 

 ConnectionEditPart

 PolyLineConnection
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Add the Connection Model Class
public class Connection {
  private Node source, target;
  public Node getSource() { return source; }
  public void setSource(Node source) {
    if (this.source != null)    
      source.removeSourceConnection(this);
    this.source = source;
    source.addSourceConnection(this);
  }
  public Node getTarget() { return target; }
  public void setTarget(Node target) {
    if (this.target != null)
      target.removeTargetConnection(this);
    this.target = target;
    target.addTargetConnection(this);
  }
}
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Update the Node Model Class

public class Node extends Observable {
  …
  private List sourceConnections, targetConnections;
  …
  public List getSourceConnections() {
    if (sourceConnections == null) 
      sourceConnections = new ArrayList();
    return sourceConnections;
  }
  public List getTargetConnections() {
    if (targetConnections == null) 
      targetConnections = new ArrayList();
    return targetConnections;
  }
  …
}
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Update the Node Model Class (ctn’d)

public class Node extends Observable {
  …
  public void addSourceConnection(Connection connection) {
    getSourceConnections().add(connection);
  }
  public void addTargetConnection(Connection connection) {
    getTargetConnections().add(connection);
  }
  public void removeSourceConnection(Connection connection) {
    getSourceConnections().remove(connection);
  }
  public void removeTargetConnection(Connection connection) {
    getTargetConnections().remove(connection);
  }
}
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Update the ContentProvider
public class ContentProvider {
  …
  public Graph newSampleGraph() {
    Graph result = new Graph();
    …
    newConnection(first, second);
    newConnection(first, third);
    newConnection(second, third);
    return result;
  }
  private Connection newConnection(Node source, Node target) {
    Connection result = new Connection();
    result.setSource(source);
    result.setTarget(target);
    return result;
  }
}
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Define the ConnectionEditPart

 Join source and target EditParts
 Figure is typically a line between the two nodes

public class ConnectionEditPart 
extends AbstractConnectionEditPart {
  public ConnectionEditPart(Connection connection) {
    setModel(connection);
  }
  protected void createEditPolicies() {}
  protected IFigure createFigure() {
    return new PolylineConnection();
  }
}
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GraphicalEditPartFactory Revisited

public class GraphicalEditPartFactory 
implements EditPartFactory {
  public EditPart createEditPart(
      EditPart context, Object model) {
    if (model instanceof Graph) {
      return new GraphEditPart((Graph)model); 
    } else if (model instanceof Node) {
      return new NodeEditPart((Node)model);
    } else if (model instanceof Connection){
      return new ConnectionEditPart((Connection)model);
    } else {
      return null;
    }
  }
}
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NodeEditPart Revisited

 Connections can exist without a model
 Connections cannot exist without a source and a target
 Burden of obtaining the source and target connections is on the 

NodeEditPart and not on the Node model

public class NodeEditPart 
extends AbstractGraphicalEditPart implements Observer { 
  …
  protected List getModelSourceConnections() {
    return ((Node)getModel()).getSourceConnections();
  }
  protected List getModelTargetConnections() {
    return ((Node)getModel()).getTargetConnections();
  }
}
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Nodes and Connections
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Creating Nodes and Connections

 Splitting the Canvas : SashForm and PaletteViewer
 Adding the Palette : PaletteRoot and its Tools
 Create Nodes : NodeCreateCommand
 Create Connections :

 GraphicalNodeEditPolicy

 ConnectionCreateCommand

 ConnectionAnchor

 NodeEditPart interface
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GraphEditor Revisited Once More

 Refactor createPartControl
 Add SashForm to parent

 Add PaletteViewer and GraphViewer

public class GraphEditor extends EditorPart {
  …
  public void createPartControl(Composite parent) {
    SashForm form = new SashForm(parent, SWT.HORIZONTAL);
    createPaletteViewer(form);
    createGraphViewer(form);
    form.setWeights(new int[] { 15, 85 });
  }
  …
}
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GraphEditor Revisited Once More (ctn’d)

public class GraphEditor extends EditorPart {
  …
  private void createPaletteViewer(Composite parent)  {
    PaletteViewer viewer = new PaletteViewer();
    viewer.createControl(parent);
    editDomain.setPaletteViewer(viewer);
    editDomain.setPaletteRoot(new PaletteRoot());
  }
  …
}
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GraphEditor Revisited Once More (ctn’d)

public class GraphEditor extends EditorPart {
  …
private void createGraphViewer(Composite parent) {
    ScrollingGraphicalViewer viewer = 
      new ScrollingGraphicalViewer();
    viewer.setRootEditPart(new ScalableFreeformRootEditPart());
    viewer.createControl(parent);
    viewer.getControl().setBackground(ColorConstants.white);
    viewer.setEditPartFactory(new GraphicalEditPartFactory());
    viewer.setContents(
      ContentProvider.INSTANCE.newSampleGraph());
    editDomain.addViewer(viewer);
  }
}
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Editor with Empty Palette
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Populate the Palette : PaletteRoot

public class GraphPalette extends PaletteRoot {
  public GraphPalette() {
    PaletteGroup group = new PaletteGroup("Graph Controls");
    SelectionToolEntry entry = new SelectionToolEntry();
    group.add(entry);
    setDefaultEntry(entry);
    group.add(new PaletteSeparator());
    group.add(new CreationToolEntry(
      “Node”, “Creates a new node.”,
      new NodeFactory(), null, null));
    group.add(new ConnectionCreationToolEntry(
      “Connection”, “Creates a new connection.”, 
      new ConnectionFactory(), null, null));
    add(group);
  }
}
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Populate the Palette : CreationFactory

public class NodeFactory implements CreationFactory {
  public Object getNewObject() { return new Node(); }
  public Object getObjectType() { return Node.class; }
}

public class ConnectionFactory implements CreationFactory {
  public Object getNewObject() { return new Connection(); }
  public Object getObjectType() { return Connection.class; }
}
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Populate the Palette : GraphEditor

public class GraphEditor extends EditorPart {
  …
  private void createPaletteViewer(Composite parent)  
{
    PaletteViewer viewer = new PaletteViewer();
    viewer.createControl(parent);
    editDomain.setPaletteViewer(viewer);
    editDomain.setPaletteRoot(new GraphPalette());
  }
  …
}
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Editor With Populated Palette
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Creating New Nodes

 Define NodeCreateCommand
 Implement getCreateCommand
 Make Graph/GraphEditPart Observer/Observable
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Define NodeCreateCommand
public class NodeCreateCommand extends Command {
  …
  private Node node;
  private Rectangle constraint;
  private Graph parent;
  public void execute() {
    setNodeConstraint();
    setNodeName();
    parent.addNode(node);
  }
  private void setNodeName() {
    node.setName(parent.getNextNodeName());
  }
  private void setNodeConstraint() {
    if (constraint != 
null)node.setConstraint(constraint);
  }
  …



© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction71

Define NodeCreateCommand (ctn’d)

public class NodeCreateCommand extends Command {
  private static final Dimension INITIAL_NODE_DIMENSION = 
    new Dimension(65, 35);
  …
  public void undo() {parent.removeNode(node);}
  public void setNode(Node node) {this.node = node;}
  public void setLocation(Point location) {
    this.constraint = new Rectangle(
    location, INITIAL_NODE_DIMENSION);
  }
  public void setParent(Graph parent) {
    this.parent = parent;
  }
}
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Graph Revisited Again
public class Graph {
  …
  public String getNextNodeName() {
    int runner = 1;
    while (true) {
      String candidate = "node" + runner;
      if (getNodeByName(candidate) == null) return candidate;
      runner ++;
    }
  }
  private Node getNodeByName(String candidate) {
    for (int i = 0; i < getNodes().size(); i++)
      if (candidate.equals(((Node)getNodes().get(i)).getName()))
        return (Node)getNodes().get(i);
    return null;
  }
}
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GraphXYLayoutPolicy Revisited

 Implement getCreateCommand
 Only handle requests to create Nodes

public class GraphXYLayoutEditPolicy 
extends XYLayoutEditPolicy {
  …
  protected Command getCreateCommand(CreateRequest request) {
    if (request.getNewObjectType().equals(Node.class)) {
      NodeCreateCommand result = new NodeCreateCommand();
      result.setLocation(request.getLocation());
      result.setNode((Node)request.getNewObject());
      result.setParent((Graph)getHost().getModel());
      return result;
    }
    return null;
  }
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Graph Revisited Once More

public class Graph extends Observable {
  …
  public void addNode(Node node) {
    getNodes().add(node);
    setChanged();
    notifyObservers();
  }
  public void removeNode(Node node) {
    getNodes().remove(node);
    setChanged();
    notifyObservers();
  }
  …
}
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Editor With Some Extra Nodes
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Creating New Connections

 Define ConnectionCreateCommand
 Define NodeGraphicalNodeEditPolicy

 Implement getConnectionCreateCommand

 Implement getConnectionCompleteCommand
 Make connection changes observable
 Install NodeGraphicalNodeEditPolicy
 Make our NodeEditPart implement the 

org.eclipse.gef.NodeEditPart interface
 Obtaining the ConnectionAnchor

 Observe the connection changes of the model
 Get rid of the ContentProvider
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Define ConnectionCreateCommand

public class ConnectionCreateCommand extends Command {
  private Node source;
  private Node target;
  private Connection connection;
  public void setSource(Node source) {
    this.source = source;
  }
  public void setTarget(Node target) {
    this.target = target;
  }
  public void setConnection(Connection connection) {
    this.connection = connection;
  } 
  …
}
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ConnectionCreateCommand (ctn’d)

public class ConnectionCreateCommand extends Command {
  …
  public boolean canExecute() {
    return source != null && target != null;
  }
  public void execute() {
    connection.setSource(source);
    connection.setTarget(target);
  }
  public void undo() {
    connection.setSource(null);
    connection.setTarget(null);
  }
}
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Define NodeGraphicalNodeEditPolicy

public class NodeGraphicalNodeEditPolicy 
extends GraphicalNodeEditPolicy {
  protected Command getConnectionCreateCommand(
      CreateConnectionRequest request) {
    ConnectionCreateCommand result = 
      new ConnectionCreateCommand();
    result.setSource((Node)getHost().getModel());
    result.setConnection((Connection)request.getNewObject());
    request.setStartCommand(result);
    return result;
  }
  …
}



© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction80

Define NodeGraphicalNodeEditPolicy (ctn’d)

public class NodeGraphicalNodeEditPolicy 
extends GraphicalNodeEditPolicy {
  …
  protected Command getConnectionCompleteCommand(
      CreateConnectionRequest request) {
    ConnectionCreateCommand result = 
      (ConnectionCreateCommand)request.getStartCommand();
    result.setTarget((Node)getHost().getModel());
    return result;
  }
  … //Stubs for the remaining methods
}
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Node Revisited Again

public class Node extends Observable {
  …
  public void addSourceConnection(Connection connection) {
    getSourceConnections().add(connection);
    notifyObservers();
  }
  public void addTargetConnection(Connection connection) {
    getTargetConnections().add(connection);
    notifyObservers();
  }
  …
}
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Node Revisited Again (ctn’d)

public class Node extends Observable {
  …
  public void removeSourceConnection(Connection connection) {
    getSourceConnections().remove(connection);
    notifyObservers();
  }
  public void removeTargetConnection(Connection connection) {
    getTargetConnections().remove(connection);
    notifyObservers();
  }
}
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NodeEditPart Revisited Again

 Installation of the NodeGraphicalNodeEditPolicy

public class NodeEditPart 
extends AbstractGraphicalEditPart 
implements Observer { 
  …
  protected void createEditPolicies() {
    installEditPolicy(
      EditPolicy.GRAPHICAL_NODE_ROLE, 
      new NodeGraphicalNodeEditPolicy());
  }
}
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NodeEditPart Revisited Again (ctn’d)

 Observing connection model changes

public class NodeEditPart 
extends AbstractGraphicalEditPart 
implements Observer { 
  …
  public void update(Observable observable, Object message) {
    refreshVisuals();
    refreshSourceConnections();
    refreshTargetConnections();
  }
}
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NodeEditPart Revisited Again (ctn’d)

public class NodeEditPart extends AbstractGraphicalEditPart 
implements Observer, org.eclipse.gef.NodeEditPart {
  … 
  public ConnectionAnchor getSourceConnectionAnchor(
      ConnectionEditPart connection) {
    return ((NodeFigure)getFigure()).getConnectionAnchor();
  }
  public ConnectionAnchor getTargetConnectionAnchor(
      ConnectionEditPart connection) {
    return ((NodeFigure)getFigure()).getConnectionAnchor();
  }
  …
}
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NodeEditPart Revisited Again (ctn’d)

public class NodeEditPart extends AbstractGraphicalEditPart 
implements Observer, org.eclipse.gef.NodeEditPart {
  … 
  public ConnectionAnchor getSourceConnectionAnchor(
      Request request) {
    return ((NodeFigure)getFigure()).getConnectionAnchor();
  }
  public ConnectionAnchor getTargetConnectionAnchor(
      Request request) {
    return ((NodeFigure)getFigure()).getConnectionAnchor();
  }
}
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NodeFigure Revisited

 Create the connection anchor lazily

public class NodeFigure extends Figure {
  private ConnectionAnchor connectionAnchor;
  …
  public ConnectionAnchor getConnectionAnchor() {
    if (connectionAnchor == null) {
      connectionAnchor = new ChopboxAnchor(this);
    }
    return connectionAnchor;
  }
}
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Eliminate ContentProvider

 Delete the ContentProvider class
 Modify the createGraphViewer method in class GraphEditor

public class GraphEditor extends EditorPart {
  …
  private void createGraphViewer(Composite parent) {
    ScrollingGraphicalViewer viewer = 
      new ScrollingGraphicalViewer();
    viewer.setRootEditPart(new ScalableFreeformRootEditPart());
    viewer.createControl(parent);
    viewer.getControl().setBackground(ColorConstants.white);
    viewer.setEditPartFactory(new GraphicalEditPartFactory());
    viewer.setContents(new Graph());
    editDomain.addViewer(viewer);
  }
}
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GraphEditor With Connection Support
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Delete Support

 Include DeleteAction in ActionRegistry
 Selection Support :

 SelectionProvider

 SelectionListener
 Update ActionBarContributor
 Deleting Nodes : 

 NodeDeleteCommand 

 NodeComponentEditPolicy
 Deleting Connections :

 ConnectionDeleteCommand

 ConnectionEditPolicy

 ConnectionEndpointEditPolicy
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ActionRegistry Revisited

public class GraphEditor extends EditorPart {
  private ActionRegistry actionRegistry;
  …
  private void initActionRegistry() {
    actionRegistry = new ActionRegistry();
    actionRegistry.registerAction(new UndoAction(this));
    actionRegistry.registerAction(new RedoAction(this));
    actionRegistry.registerAction(
      new DeleteAction((WorkbenchPart)this));
  }
  …
}
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GraphViewer Is SelectionProvider

public class GraphEditor extends EditorPart {
  …
  private void createGraphViewer(Composite parent) {
    ScrollingGraphicalViewer viewer = 
      new ScrollingGraphicalViewer();
    viewer.setRootEditPart(new ScalableFreeformRootEditPart());
    viewer.createControl(parent);
    viewer.getControl().setBackground(ColorConstants.white);
    viewer.setEditPartFactory(new GraphicalEditPartFactory());
    viewer.setContents(new Graph());
    editDomain.addViewer(viewer);
    getSite().setSelectionProvider(viewer);
  }
}
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Define the SelectionListener

public class GraphEditorListener 
implements CommandStackListener, ISelectionListener {
  …
  public void commandStackChanged(EventObject event) {
    updateActions();
  }
  public void selectionChanged(
      IWorkbenchPart part, ISelection selection) {
    updateActions();
  }
  …
}
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Define the SelectionListener (ctn’d)

public class GraphEditorListener 
implements CommandStackListener, ISelectionListener {
  …
  private void updateActions() {
    Iterator iterator = actionRegistry.getActions();
    while (iterator.hasNext()) {
      Object action = iterator.next();
      if (action instanceof UpdateAction)
        ((UpdateAction)action).update();
    }
  }
}
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Add the SelectionListener

public class GraphEditor extends EditorPart {
  …
  private void initGraphEditorListener() {
    GraphEditorListener graphEditorListener = 
      new GraphEditorListener(actionRegistry));
    ISelectionService selectionService = 
      getSite().getWorkbenchWindow().getSelectionService();
    editDomain.getCommandStack().addCommandStackListener(
      graphEditorListener);
    selectionService.addSelectionListener(
      graphEditorListener); 
  }
}
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Update ActionbarContributor

public class ActionBarContributor 
extends EditorActionBarContributor {
  public void setActiveEditor(IEditorPart targetEditor) {
    …
    String deleteId = ActionFactory.DELETE.getId();
    actionBars.setGlobalActionHandler(
      deleteId, actionRegistry.getAction(deleteId));
    actionBars.updateActionBars();
  }
}
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Define NodeDeleteCommand
public class NodeDeleteCommand extends Command {
  private Node node;
  private Graph graph;
  private List connections;
  private Map connectionSources, connectionTargets;
  public void setNode(Node node) { this.node = node; }
  public void setGraph(Graph graph) { this.graph = graph; }
  public void execute() { 
    detachConnections();
    graph.removeNode(node);
  }
  public void undo() {
    graph.addNode(node);
    reattachConnections();
  }
  …
}
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Define NodeDeleteCommand (ctn’d)
public class NodeDeleteCommand extends Command {
  …
  private void detachConnections() {
    connections = new ArrayList();
    connectionSources = new HashMap();
    connectionTargets = new HashMap();
    connections.addAll(node.getSourceConnections());
    connections.addAll(node.getTargetConnections());
    for (int i = 0; i < connections.size(); i++) {
      Connection connection = (Connection)connections.get(i);
      connectionSources.put(connection,connection.getSource());
      connectionTargets.put(connection,connection.getTarget());
      connection.setSource(null);
      connection.setTarget(null);
    }
  }
  …
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Define NodeDeleteCommand (ctn’d)

public class NodeDeleteCommand extends Command {
  …
  private void reattachConnections() {
    for (int i = 0; i < connections.size(); i++) {
      Connection connection = (Connection)connections.get(i);
      connection.setSource(
        (Node)connectionSources.get(connection));
      connection.setTarget(
        (Node)connectionTargets.get(connection));
    }
  }
}
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Define NodeComponentEditPolicy

 Override the createDeleteCommand method

public class NodeComponentEditPolicy 
extends ComponentEditPolicy {
  protected Command createDeleteCommand(GroupRequest request) {
    NodeDeleteCommand deleteCommand = new NodeDeleteCommand();
    deleteCommand.setGraph(
      (Graph)getHost().getParent().getModel());
    deleteCommand.setNode((Node)getHost().getModel());
    return deleteCommand;
  }
}
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Install NodeComponentEditPolicy

 Responsibility of NodeEditPart

public class NodeEditPart extends … { 
  …
  protected void createEditPolicies() {
    …
    installEditPolicy(
      EditPolicy.COMPONENT_ROLE,
      new NodeComponentEditPolicy());
  }
}
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Selecting Connections

 Install ConnectionEndpointEditPolicy
 Primary SelectionEditPolicy for showing focus on connections

 All ConnectionEditParts need one

public class ConnectionEditPart 
extends AbstractConnectionEditPart {
  …
  protected void createEditPolicies() {
    installEditPolicy(
      EditPolicy.CONNECTION_ENDPOINTS_ROLE, 
      new ConnectionEndpointEditPolicy());
  }
  …
}
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Define ConnectionDeleteCommand
public class ConnectionDeleteCommand extends Command {
  private Node source, target;
  private Connection connection;
  public void setConnection(Connection connection) {
    this.connection = connection;
  }
  public void execute() {
    if (source == null) source = connection.getSource();
    if (target == null) target = connection.getTarget();
    connection.setSource(null);
    connection.setTarget(null);
  }
  public void undo() {
    connection.setSource(source);
    connection.setTarget(target);
  }
}
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Define  ConnectionEditPolicy

 Default model-based EditPolicy for Connections
 Only knows about the model and its basic operations

 Single default operation : DELETE

public class ConnectionEditPolicy 
extends org.eclipse.gef.editpolicies.ConnectionEditPolicy {
  protected Command getDeleteCommand(GroupRequest request) {
    ConnectionDeleteCommand result = 
      new ConnectionDeleteCommand();
    result.setConnection((Connection)getHost().getModel());
    return result;
  }
}
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Install ConnectionEditPolicy

public class ConnectionEditPart 
extends AbstractConnectionEditPart {
  …
  protected void createEditPolicies() {
    installEditPolicy(
      EditPolicy.CONNECTION_ROLE, 
      new ConnectionEditPolicy());
    installEditPolicy(
      EditPolicy.CONNECTION_ENDPOINTS_ROLE, 
      new ConnectionEndpointEditPolicy());
  }
  …
}
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Basic Functional Graph Editor
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What’s Next?

 Saving and loading the model
 By serialization or with XML representation

 Provide an outline view
 Support for a grid, zooming, guides, …
 Make actions available through context menu
 Provide an extension point to plug-in custom node types
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Final Thoughts

 Steep and long learning curve
 Starting from scratch is not easy

 No books available

 Starting small is mandatory to fully understand
 Very rich framework 

 Lots of predefined functionality

 Do very complex things with almost no code
 Use code and javadocs to find details

 Overwhelming for newbie
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Questions?


