
1

Advanced EE6 Lab

Part 3, CDI Portable Extensions

 and DeltaSpike

Marek Schmidt

Dec 2012

2

Project

● git clone git://github.com/qa/pv243.git

● cd pv243

● git checkout deltaspike-00

● JBDS -> Import... -> Maven -> Existing Maven Projects
-> lesson03-cdi-pe

● http://wumpus-social.rhcloud.com

3

Wumpus Social

● Based on the original BSD game “wumpus”

4

Task 0

● Explore the application

● room.xhtml / RoomAction

● CurrentPlayerManager

● RoomEventsNarrator

● Player / Room

● EntryRoom, EastRoom, SouthRoom, PitRoom

5

Task 1 Make it more social

● Change the application so there is only one set of
room instances, so all the players would share the
rooms

6

Task 1 Solution

● Change the rooms scope from @SessionScoped to
@ApplicationScoped

7

Task 2 Configure the rooms from a xml file

● Write a CDI extension which would configure Room
beans from a xml file

● (ignore the room description and smell for now)

● class Room {
 private Room north;
 private Room south;
 ..
}

@RoomName(“room1”)
@ApplicationScoped
class Room {
 @Inject @RoomName(“room2”)
 private Room north;

 ...
}

@RoomName(“room2”)
@ApplicationScoped
class Room {
 @Inject @RoomName(“room1”)
 private Room south;

 ...
}

8

Task 2 Hints

● XmlRoomBeansExtension

● META-INF/services/javax.enterprise.inject.spi.Extension

● BeforeBeanDiscovery event, addAnnotatedType(...)

● DeltaSpike AnnotatedTypeBuilder

● readFromType

● addToClass

● addToField

● create
● class InjectLiteral extends AnnotationLiteral<Inject> implements Inject {}

9

Task 3 Room description and smell

● Create @StringsEntry qualifier, producer and add @Inject @StringsEntry annotations
into description and smell fields of our room annotated types in
XmlRoomBeansExtension

● @ApplicationScoped
@RoomName(“foo”)
class Room {
 @Inject
 @StringsEntry(“You fall into a bottomless pit”)
 private String description;

 @Inject
 @StringsEntry(“You feel a breeze”)
 private String smell;
 ...
}

● @Qualifier
@Target({ FIELD })
@Retention(RUNTIME)
public @interface StringsEntry {
 @Nonbinding String value() default "";
}

●

10

Task 3 Hints

public class StringsProducer {
 @Produces
 @StringsEntry
 public String getString(InjectionPoint ip) {
 StringsEntry annotation =
ip.getAnnotated().getAnnotation(StringsEntry.class);
 return annotation.value();
 }
}

● Continue with the XmlRoomBeansExtension addRoom method

● (DeltaSpike)

AnnotationInstanceProvider.of(StringsEntry.class, values);

● AnnotatedTypeBuilder addToField

● new InjectLiteral()

11

Task 4 @GameScoped

● Create a custom context GameContext

● Each game have a Integer identifier

● A bean may produce a @CurrentGameId Integer to
specify the current game context.

● Game contexts will be controlled by a
@ApplicationScoped GamesManager bean

12

Task 4 Hints

● GameScopeExtension
● META-INF/services/javax.enterprise.inject.spi.Extension
● AfterBeanDiscovery addContext

● GamesManager
● Uncomment GameContext calls

● GameContext
● Implement getCurrentGameId

● beanManager.getBeans
● beanManager.createCreationalContext
● beanManager.getReference
● bean.destroy

● XmlRoomBeansExtension GameContextLiteral

13

Task 5 Random Room Producer

● Create a random Room Producer

● Modify the CurrentPlayerManager to inject a random
initial room.

14

Task 5 Hints

● @ApplicationScoped RandomRoomProducer
● @Produces @Random Room getRandomRoom() {...}

● private java.util.Random random = new java.util.Random();

● 1. get the room names available by reading the RoomName qualifiers
on all the Room-typed beans

● beanManager.getBeans(Room.class, new AnyLiteral());

● Bean getQualifiers

● 2. get a random RoomName qualifier

● 3. @Inject @Any Instance<Room> roomInstance;

roomInstance.select(
 new RoomName.RoomNameLiteral(randomName));

15

Task 6 Add Wumpus

● Create a @GameScoped Wumpus bean

● Wumpus sits in a random room, stays there and eats
any traveller that enters his room

● Wumpus smells really bad (2 rooms)

● Player that shoots at the room in which Wumpus sits,
wins and all the other players lose.

● onMove(@Observes PlayerEnteredRoomEvent
event, ...

● onShoot(@Observes PlayerShootAtRoomEvent
event, ...

16

Task 6 Hints

● Smelling means gameMessage.add() when a player
moves to a room that is near the room wumpus sits.

● Winning/ending the game is the same as killing a
player

● currentPlayer.setAlive(false);
● currentPlayer.setDeathMessage("You have killed the

wumpus! You won!");
● You can inject a list of all the players in the current

game
● @Current List<Player> players

17

Task 7 Ordered Observers

● Create an extension that would allow ordering of event observers

● roomDescriptionObserver(@Observes @ObserverOrder(0)
PlayerEnteredRoomEvent event, ...)

● roomSmellObserver(@Observes @ObserverOrder(1)
PlayerEnteredRoomEvent event, ...)

● @ObserverOrder would be a qualifier

orderingObserver(@Observer PlayerEnteredRoomEvent event) {
 roomDescriptionObserverMethod.notify(event);
 roomSmellObserverMethod.notify(event);
}

18

Task 7 Hints

● register ObserverOrderExtension

● Implement the processObserverMethod to gather the
observer methods with the @ObserverOrder qualifier

19

The End

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

