[image: image1.jpg]
About the author

Amirsam bahador is one of the talented developers and project managers that have been done several projects with java programming language and oracle DBMS. His tendency is to work with Ruby, Go and ActionScript.

He has produced many technologies and frameworks for java, ruby. Shine Enterprise Java Pattern is one of his best products. Shine J2EE Application Framework is one of his products that have gained first rank in the SourceForge website.
Bahador is one of the theorists in the Artificial Intelligence field. He is well-known people in JAVA community in Iran. One of his honors is that he has never delayed for delivering his enterprise projects.

Bahador has written many books about programming languages and DBMSs. Most important of them are:
Complete Refrence of ORACLE (Refrance at the universities)
The basic concepts of working with java technologies

And his other products:
Producing the first WEB BASE Operation System

Producing New no retrievable pattern for cryptography

Producing new technology that enable makes programming languages have relation with each other.

Producing a new method for information storage and recovery
Virtual human

Now he is teaching at university of applied, science and technology in IT College (unit34) and he also is the J2OS organization manager.

For more information you can refer to: http://www.J2OS.org
Introduction

The Author’s Words

Acknowledgments
First the all thanks God that helps me to writing another book then
I appreciate all, who have been helping to progress open source especially:

Ms. Mona shokri moghadam

Ms. faeze sadat maleki

Ms. farahnaz sadat maleki

And members of the researching and exploratory J2OS organization.
Who should study this book?
This book is written for both novices to professional J2EE developers who want to produce enterprise projects. Meanwhile it is proper for whom that wants to participate in the Meshkat international institute IT exam.

Purposes of writing this book

These days, java developers can work with struts framework and produce enterprise applications. But sometimes engaging with details keep them away from important points in their projects.

Another problem is that there isn't any standard open source pattern for producing and developing projects, and this cause to developers who has recently joined to project can't compatible with team easily. Another important problem is to reusing their codes, of course this problem has been decrease due to of object oriented but this is not enough factors for troubleshooting. Shine Enterprise Java Pattern solves all of these problems. This book is reference for learning how to works with Shine Enterprise Java Pattern.
SHINE Forum
For any questions about Shine Enterprise Java Pattern please refer to: www.J2OS.org
Pre- requirement
For studying this book you have to know about J2SE, J2EE, Struts and Hibernate technologies.
 Author’s Request

I tried my best to avoid any mistake in this book, but if you encounter with any problem please contact us with: Java2oracle@yahoo.com
Chapter One

Introducing Shine Pattern

A brief history of Shine
When we started to do a project we encountered an important problem. Developing a project with amateur developers is very dangerous. Because new developers don't care about some important things, and if the project manager, technical architect or head developer don’t care about those points, the project will fail.

In 2008 the university manager to assess the student progress situation wants them to develop an enterprise project. Because most of students haven’t enough experiences in implementing software project, we did primary analysis and during implementing project we try to don't help them. Unfortunately output of the project was re-programming the project. This problem kept our mind busy for a long time until we try to create a standard and comprehensive pattern for completing a project. After doing this job we do many enterprise projects with this pattern and the result was 50% saving time of developing and extending the project. So we decided to offer this pattern for developers in SourgeForge website.
The problems which make the projects to are:
· Not to follow a standard architecture

· Not to care about naming rules in forms, classes, pages...
· Creating useless classes in frameworks such as Struts, Spring and also JSF
· Using complexity classes

· Implementing logic layer in the UI layer
· Plethora of dependency on UI

· Gaffes of web designer

· Creating meaningless pages

· Not to care about security points

· Creating complexity in distributed application on the network by using RMI, Corba, JMS

· Plethora engaging with frameworks XML adjustments

Shine's parts
Shine pattern has been developed for variety of application. This pattern has these parts:
· Maplet: a framework for doing web projects which are coincidence with MVC architecture. This framework helps developers to follow a standard pattern for developing a web application. Maplet helps developers to save time of developing and extending.
· JShooter: a framework that makes reflects oriented programming an easy job for developers. Meanwhile it helps distributing application on the network.

· JConnection: This package helps developers to work with JDBC and Hibernate easier than before.

· Util: This package helps developers in these subjects:

1- File System
2- Runtime

3- Compiler

4- System Information

5- Web Socket

6- MD5

7- Thread

8- Validation

9- XML Parsing
10- Web uploading
Suggestion

Our suggestion is that before producing any new part for your application search our Util package. There are lots of classes in this package that help you in different fields. This package will be developed by java open source developers in every version of Shine.

Caution
In Shine 2.2 version, all the org.j2sos packages’ name changed to org.j2os.
Chapter two

Maplet (Web, MVC Framework)

What is Maplet?

Maplet is a framework for implementing web based program, which is compatible with MVC architecture. This framework is very easy and helpful for developers and analyzers to do their jobs better than before, let’s begin with a simple example.
First example

First you have to download shine library from one of these web sites:
www.j2os.org
http://sourceforge.net/projects/shine-enterpris
After downloading, go to deploy folder and add all jar files to your project. After that, make maplet.tld file in side of your web.xml in WEB-INF folder. Content of this file is like below:

[image: image2.png]
Figure 2-1

This file is always permanent and won't change. After doing these, create a JSP page. Name of this page is MyForm.jsp. Be careful, name of this page is important.

This file is like this:
[image: image3.png]
Figure 2-2
Now you must create a Servlet in the controller package and choose “Validation” for name of this page. This file is like below:
[image: image4.png]
Figure 2-3
Now run MyForm.jsp and click on submit button. Then result is like this:

[image: image5.png]
Figure 2-4
As you see after clicking on submit button the user goes to the Servlet and three “initialize”, “myForm”, and “rater” methods have been called. Now run your Servlet.

[image: image6.png]
Figure 2-5

As you see this time “myForm” method hasn’t been called. This is because this method is just called when your request comes from MyForm.jsp page. Now create another page with the name of Test2.jsp. Content of this file is the same as Myform.jsp.

[image: image7.png]
Figure 2-6

Now we must add a method to created Servlet. As you guess name of this method is test2.

[image: image8.png]
Figure 2 - 7

Now run the test2.jsp page and then click on submit button.

[image: image9.png]
Figure 2 - 8

Let's examine the Servlet:

- Each Servlet must inherit from Maplet class.

- Each Servlet has two fixed methods and number of variable ones. Fixed methods are “initialize” and “rater”, variable methods are those which named like page name.

- Variable methods are named exactly same as the name of request pages, the only difference is that they start with small letters.

The invocation process of methods is as follows:
1- initialize()

2- page_Name_Method()

3- rater()

- In case the user enters to the Servlet directly (doesn’t use the homonymous method of the request page in Servlet), only the “initialize” and “rater” methods will be invoked.

MVC:

In real projects, each Servlet plays role of an entity in project that has a behavior. For example, consider the following image:
[image: image10.png]
Figure 2-9

In fact, admin is a Servlet which has two methods: creating and deleting the user. Admin invocation methods may vary regarding the user request. For example, if the user goes to the Servlet from CreateUser request page, the CreateUser method will be invoked.

In real application, the user request begins with a JSP page and ends with observing the result in another JSP page. Of course, in the previous example we made the Servlet responsible for display output of user request, which is not correct.

New rule: after this time, we will call any Servlet, which has inherited from Maplet Class, a Maplet.

Consider the following image:

[image: image11.png]
Figure 2-10

As you see in figure 2-10, the user request begins with one of the CreateUser.jsp or DeleteUser.jsp pages and then goes to “Validator” (Maplet). In this maplet, the entered values in the user form files will be evaluated and then the request of the user will be sent to the “Admin” (Maplet). In “Admin” (Maplet) the information will be saved or deleted and then the user request will be sent to the AdminResponse.jsp page. The user will receive the output in this page.

Notes:

1. Unlike Struts, the contents of user URL is accessible up to AdminResponse.jsp page. In Struts, this operation is done only by Session or Application.

2. In Maplet, include and forward methods are in charge of guiding the user request.

3. As you see when the user send his request from CreateUser.jsp page, the “initialize”, CreateUser and “rater” methods will be invoked in Validator (Maplet) and after forwarding to Admin (Maplet), the “initialize”, createUser and “rater” methods will be invoked from this Maplet.

Maybe you are confused how it is possible that there is only one response page per two CreateUser.jsp and DeleteUser.jsp request pages. Later, we will describe it more.
Forward & include methods:

To explain how forward and include methods operate, we implement application in figure 2-10. (The different is that the Admin (Maplet) is responsible for responding to the user.) The structure of our project is as follows:

[image: image12.png]
Figure 2-11
Below you can see the contents of CreateUser.jsp and DeleteUser.jsp pages respectively:

[image: image13.png]
Figure 2 – 12
[image: image14.png]
Figure 2 – 13
As you can see, the “action” of both forms is set to the Validator (Maplet). Now pay attention to Validator class:

[image: image15.png]
Figure 2 – 14

As you see, classes which inherit from Maplet have request, response, session, config, application and out objects. They are defined beforehand and are usable too (although you will use the request object less). The validation operation is done in this class. Then the user request will be sent to Admin (Maplet) in case of correctness of the input. Sending user's request is done by the forward method. It worth mentioning that the include method operates like include tag and the forward method operates like forward tag in JSP. The only difference between them is that they send the URL to the receiver. Now, see the code, inside the Admin (Maplet).

[image: image16.png]
Figure 15-2
As we said, the URL parameters will be sent to (Maplet) Admin. Now let's follow the program from CreateUser.jsp Page.

[image: image17.png]
Figure 2 – 16
If the user does not fill the blank parts of the form, he will see the following massage.

[image: image18.png]
Figure 2 - 17

However, if the user fills the blank parts of the form like figure 2-18, he will see figure 2-19.
[image: image19.png]
Figure 2 – 18

[image: image20.png]
Figure 2 - 1
Guidance:

If you are not willing the user would be able to see the URL parameter's after invocation the forward method, we suggest using the include method. This method includes the next page or the next Maplet. Of course it should be noted that if you use out.print() before or after include, the result of out.print command will be shown next to the include content.

Saying goodbye to request.getParameter in Controller and the Boring FormBean:

In Maplet, if a property is homonymous with the existing parameters in URL which were defined as public and String type, it will be automatically valued.

Consider the following example:

[image: image21.png]
Figure 2 - 20

As you can see there is a Maplet named Property in this project, the inner code of this Maplet is as follows:

[image: image22.png]
Figure 21-2
Now take a look at the contents of the Test.jsp page.

[image: image23.png]
Figure 2 - 22

As you see, there is a field which is called name in the form of this page. If you refer to Property class again, you will see that a property which is called name has been defined in it. Now let's follow the project from the Test.jsp page
[image: image24.png]
Figure 2 - 23

[image: image25.png]
Figure 2-24
As you see maplet initialize the name property automatically. Now suppose that the action of five request pages is set to the property (Maplet) and all of these pages have a name field. Please judge whether the maplet reduces the code of developers or not?!

The main task of initialize and rater methods

“Initialize” and “rater” methods do the same as Header and Footer of a request .for example you can connect to the database with the rater method and work with the Statement object in JDBC in the page name method.

AddURL method

Sometimes you need to send a parameter to other maplet or page. Using Session, Application or Cookie is easy but each of them has some problems. So it's better to work with URL.

In enterprise projects, developers don't like to work with URL because it causes problems and results unmeaning code, but the only way is URL. So maplet has a method that makes it easy to work with URL. This method is addURL. For example its enough just using addURL method before “forward” method like below to send AGE=24 with the previous URL to another page or Maplet.

[image: image26.png]
Figure 2-25

Now you can use request.getParameter("AGE") in Response.jsp page to get the 23 value.

SecureAddURL

This method is same as addURL method, but this method codes the parameter to md5 and then sends it.

How a page can consist of some pages?

In previous parts we have worked with “forward” method in simple mode. In this part we want to work with “secureForward”. Most of the times there is no need to make a new page for showing output.

[image: image27.png]
Figure2-26

As you see this is a simple JSP page with the name of Response.jsp which contains some messages.

The messages are:

- OK

- ERROR

- FAILED

Notice that these messages can be HTML code or JSP and so on. Each message has a nickname. For example nickname of “OK” message is “success”. “FAILED” message doesn't have any nickname because if the user directly comes to this page this message will be shown to him or her. In this example the Maplet just has the “rater” method. Notice that using “initialize”, “rater” and other methods are optional.

[image: image28.png]
Figure 2-27

In this condition the output is like this:

[image: image29.png]
Figure 2-28

The reason is obvious because we just enter the name of the page in “forward”.

Now let's see the following example:

[image: image30.png]
Figure 2-29

In this example the user will see the below message.

[image: image31.png]
Figure 2-30

Now if we write “forward1” instead of “success” in the secureForward, the user will see “ERROR” message. Notice the URL that has been sent to this page.

It's necessary to mention that in this example the user can't go to this part of page directly. In next example we change Response.jsp in a way that the user can come to this page directly.

Notice that directly means go to a page without going to a Maplet before that.

Here is the example:

[image: image32.png]
Figure 2-31
As you see the difference between this page and previous page is that the “SecureServise” is changed to “Service” and the user can go to the part of Response.jsp page directly. Notice that in order to go to a part of this page you must use simple “forward” method.
[image: image33.png]
Figure 2-32
We use simple forward in this example.

[image: image34.png]
Figure 2-33
As you see, the user can save the address and use that to go to a part of page directly in the future.

At the end it's necessary to say that there are “include” and “secureInclude” in Maplet too.

Maplet Listener

The Listener must be declared in web.xml file. Here is the style of declaring a Listener:

[image: image35.png]
Figure 2-34
After that you can use it as below:

[image: image36.png]
Figure 2-35
· “getActiveSessionCounter” method shows the number of online users.

· “getSessionCounter” method shows the number of viewers.

· “resetSessionCounter” method resets the counter of viewers.

· “resetActiveSessionCounter” method resets the counter of online users.

A general example

In this part we want to remind you all things you have learned earlier with a general example. In this example we have two JSP pages which names’ are: InsertName.jsp and Response.jsp and also a Maplet which name is Core.

Here are the InsertName.jsp page codes:

[image: image37.png]
Figure 2-36
Core (Maplet) codes:

[image: image38.png]
Figure 2-37
Now look at the Response.jsp page codes:

[image: image39.png]
Figure 2-38
As you see, the request of user starts from InsertName.jsp. In Core (Maplet), the “name” field of the request page is assessed. If the field is empty the user goes to part error in Response.jsp page, otherwise goes to the ok part of Response.jsp page. Notice that if the user leaves the name field empty, a message will be sent to the Response.jsp page with “addURL” method. Now let's start our job with InsertName.jsp page.
[image: image40.png]
Figure 2-39
As you see, the user enters "David" value and sees the result as below:

[image: image41.png]
Figure 2-40
Now if the user leaves the field empty the below message will be shown:

[image: image42.png]
Figure 2-41
Now if the user goes to the Response.jsp directly without using Maplet (Core), the NoAccess message will be shown.
Changing a property in Class

If URL variables’ content change in Maplets after “forward” or “secureForward”, the next page or Maplet will get the new content. This example contains a Validator Class and two EnterName.jsp and NameResponse.jsp pages.

Here are the EnterName.jsp contents:

[image: image43.png]
Figure 2-42
Validator Class contents:

[image: image44.png]
Figure 2-43
This Class is responsible for checking the name and job fields whether they are filled or not, if the user doesn’t fill the aforementioned fields, “Please enter your name and job” message will be added to the URL and the user will be redirected to the NameResponse.jsp. Otherwise, the value of the name which existed in the URL will change and the phrase “Mr.” will be added to the beginning of that word.

See the contents of the NameResponse.jsp Class.

[image: image45.png]
Figure 2 - 46
There are three parts in this page:

· Not valid

· valid

· ErrorService

When the user does not fill the fields of the form, the “notvalid” part and in case he enters to the Response.jsp directly, the “ErrorService” part will be displayed in this page. (As you can see, we do not write the phrase Mr. in the valid section). Now, let's run the project.

[image: image46.png]
Figure 2 - 47

If the user does not fill these two fields, he will encounter the following massage.

[image: image47.png]
Figure 2 - 48

If the user fills these two fields, he will encounter the following massage.

[image: image48.png]
Figure 2 – 49
[image: image49.png]
Figure 2 - 50
Pay attention to the phrase “Mr.” at the beginning of the word “Amirsam”. The word “Mr.” is added to the name filed in Maplet. Now if the user enters to the NameResponse.jsp page directly, the following output will be displayed:

[image: image50.png]
Figure 2 -51
Chapter three

JShooter (Reflect in Network Framework)

What is JShooter?

JShooter is a framework for distributing application programs on the network. Certainly, you have used RMI, Corba and JMS. Each of aforementioned technologies has its own special problems and at the same time enjoys extraordinary advantages. However, you must be careful about the expenses caused by these technologies. In most cases RMI, Corba and JMS increase the productions’ costs unbelievably. However in other cases they confuse programmers. Years ago, Reflect Oriented Programming was the focus of attention within professional programmers, then Aspect Oriented Programming came into the programming world but instead of reducing the programmer’s task, it causes the professional programmers and even the amateur ones to be confused in many cases. One of the most important capabilities of JShooter is that it makes the “Reflect Oriented Programming” easier to use.
The first example of the Reflect Oriented Programming:
Suppose you have a class like this and you want to create an object from this in another class.

[image: image51.png]
Figure 3 -1

Now, pay attention to the class that is responsible for creating object from the above said Class.

[image: image52.png]
Figure 3 – 2
First we create an object from Application Class called app (this object has no data type). We specify it by “newInstance” method via input parameter. The Input parameter includes Calss-name and Package-name specifications). Then we create a new object by using app from MyClass and invoked “hello” method of the mentioned object.

[image: image53.png]
Figure 3 – 3
Now let's develop MyClass.

[image: image54.png]
Figure 3- 4
It’s time to change the Factory Class.

[image: image55.png]
Figure 3 -5
You can send a value to a method easily and get the return value of the method in JShooter. The output of the above program is shown below.
[image: image56.png]
Figure 3 -6
Maybe some questions arise about the last line of the application. The “invokeMethod” receives two inputs in the last line. The first input is the method name and the second one is the input argument of the method. If the “bye” method includes two input arguments, “String and Integer” types, respectively then the invoke method will be invoked as below:
[image: image57.png]
Figure 3- 7
If you run the above application, an exception error will happen.

[image: image58.png]
Figure 3- 8
The reason of this problem is obvious. The “bye” method has only one input argument which is the String type. Therefore, it is better to change the Factory Class before running the Myclass:

[image: image59.png]
Figure 3- 9
The considered Class changed. Now we can run the Factory Class.

We invoked various methods, now we must be able to access to the properties of the class, too. We will change the MyClass as below for this example.

[image: image60.png]
Figure 3- 10
Now pay attention to the Factory Class.

[image: image61.png]
Figure 3- 11
First, we created an object from engine.MyClass. Then we valued the “name” field with Larry and finally we displayed the result by “getFieldValue” method, the output of the above application is:

[image: image62.png]
Figure 3- 12
Other methods of Application Class:

Application class has different methods that help you in various tasks. These methods are:

· getMethodsTypes

· getMethodsNames

· getFieldsTypes

· getFieldsNames

The returned value type of these methods is ArrayList, so you can see the type and the name of the methods and properties easily. For example, pay attention to the application below.

[image: image63.png]
Figure 3 -13
[image: image64.png]
Figure 3-14
The output is like this:

[image: image65.png]
Figure 3-15
Constructor methods with input arguments

The “newInstance” method is like “invokeMethod” method. By this method you can send input arguments for constructor method.

[image: image66.png]
Figure 3-16
How to distribute a created object of Application Class on the network?

MyClass Class is like below in the server side:

[image: image67.png]
Figure 3-17
If clients want to use the app objects which exist in server, they need to have some codes at the server side like this:

[image: image68.png]
Figure 3-18
These codes distribute the app object on network. If there isn't any problem on network the output is like below:

[image: image69.png]
Figure 3-19
"test" string is like a password. Clients must know this password. Now let’s see the codes at client side.

Note: client just needs to have Shine Enterprise Java Pattern library.

[image: image70.png]
Figure 3-20
Note: “Paris” is the name of server.

In the first line of the codes, we get the distributed app object on network and then save it as another object with “sapp” name. The sapp object is like app object at the server. There isn't MyClass class at clientside. When you use “sapp.newInstance”, in fact the “app.newInstance” is called at the serverside. When you use sapp object to call “MyClass.hello”, the “MyClass.hello” method at the serverside is called. This program doesn't create any output for client, but at the server this output will be shown.
[image: image71.png]
Figure 3-21
We have tried to combine RMI and Reflect in JShooter and help developers to be free of mandatory interfaces in RMI. Notice that working with sapp object is like app.

An example for getting output from server

Codes at serverside:

[image: image72.png]
Figure 3-22
[image: image73.png]
Figure 3-23
Output on the server:

[image: image74.png]
Figure 3-24
Codes at clientside :

[image: image75.png]
Figure 3-25
Output at client side:
[image: image76.png]
Figure 3-26
Chapter four
JConnection (JDBC & Hibernate Component)

What is JConnection?

JConnection is a tool for developers at the DB layer that solve lots of amateurs’ problems. This tool helps you to work with JDBC and Hibernate.

JDBC Class

This class helps you to less engagement with Statement and Connectionin entities in JDBC.

[image: image77.png]
Figure 4-1
In this program, the “root” is the name of user and “BAHADOR” is the password for root user. False means that SQL commands won't be shown in console. Output of program is like this:

[image: image78.png]
Figure 4-2
Now let’s INSERT something in to the table.
[image: image79.png]
Figure 4-3
This program inserts “PS2” into name field. This program has output too. Notice to the output will be shown in console.

[image: image80.png]
Now let's run some commands in a transaction form.

[image: image81.png]
Figure 4-4
SQLReplacer Class

This class is for programmers who don't like to work with SQL strings.

[image: image82.png]
Figure 4-5

The output is like this:
[image: image83.png]
Figure 4-6

“David” and “Elison” is in the (") and 12 and true values is without (").
Hiberbate Class

This class makes it easy to work with Hibernate. For more information refer to www.J2OS.org website.

Chapter five

Util Package

What is Util?

Util package helps you to implement your application very easily. This package helps developers who don't want to use basic codes for their application.
What is Analyzer Class?

This class helps you to do XMLParsing easily. Here is the way of using this class:

[image: image84.png]
Figure 5-1
First we create an object from Analyzer class. Then we send the XML file content to object by using the “setContent” method, then by “setfilter” method say to specific object what tag must be found. Then we get values with endless loop.

The result of the above application is:

[image: image85.png]
Figure 5 – 2
What is Browser Class?

This class allows you to access the contents of a site via Web Socket.

[image: image86.png]
Figure 5 - 3
 We can get this code from the www.J2OS.org you can see the result of this application below:

[image: image87.png]
Figure 5 – 4
What is Code class?

This class can considerably help you in encryption.

[image: image88.png]
Figure 5 – 5
The result of this application is as follow:

[image: image89.png]
Figure 5 –6
What is Info Class?

This class gives the user specifications from the executive system.

[image: image90.png]
Figure 5 -7
The result of the above application is as follows:

[image: image91.png]
Figure 5 -8
What is JCompiler?

This class considerably helps you to compile at the run time. For using it, you should inherit from the JCompiler class, then use the “addFileToWindowsRuntime”, create a new class. Afterward you can create an object from the created class by using JShooter.

[image: image92.png]
Figure 5 -9
In the above example we created a class named "a" using a method called "m". In some cases, the class has been made by programmer and you only need to add methods to it. In this situation, you can use the “addCommandToClassBodyInWindowsRuntime” method like below.

[image: image93.png]
Figure 5 -10
In this example "m" method will be added to the engine.Admin Class.
What is JThread class?
This class remarkably helps using Threads. The class that uses JThread class, must fist inherit from JThread. Consider the following example.

[image: image94.png]
Figure 5 -11
The “a” and “b” methods will be run twice as thread.

What is JValidation Class?

This class helps in validations. The use of this method is as follow:

[image: image95.png]
Figure 5 -12
As you see, this class includes methods like “isX”. The output of the above example will be “true” because the word “david” has five characters. To find the names of the methods of this class, you can refer to JAVADOC.
What is root class?

This class is designed for working with FileSystem. Notice the following example:

[image: image96.png]
Figure 5 -13
At the above example a file called A.TXT will be created at the “D:\\” drive of the computer. To find the names of this class’s methods, refer to JAVADOC.

What is run Class?

This class helps you using operation system commands in your application without considering the type of it.

[image: image97.png]
Figure 5 -14
Before using the “r” object, you must specify an address name a name for creating the Temp file. Then you can reach your goals by the existing methods in this class. You see the result of this application below:

[image: image98.png]
Figure 5 -15
To find the names of the methods of this class, you can refer to JAVADOC.

This document has not been translated by native person so in case of finding any grammatical mistakes please contact us with:
Java2Oracle@yahoo.com
