

Getting Serious about Enterprise Architecture
(Whitepaper on Alignment between Testable Architectures and TOGAF)

Prologue

This whitepaper has been written to achieve the following objectives:

 A clear understanding of the meaning of:
o Enterprise Architecture in terms of components and inter-relationships
o Best Practices around modelling methods and practices

 An appreciation of:
o Formal methods of enterprise modelling
o Testable Architectures as an extension of Enterprise Architecture standards like The

Open Group Architecture Framework (TOGAF Version 9) or Zachmann to help
clearly articulate formal descriptions for the component inter-relationships

o Benefits of Testable Architectures

Setting the Scene – Standard EA Definitions

IEEE Std 1471-2000 defines Enterprise Architecture as “the systems fundamental organisation,
embodied in its components, their relationships to each other and to the environment, and the
principles guiding its design and evolution”

TOGAF 9 defines Enterprise Architecture as

a. A formal description of a system, or a detailed plan of the system at the component level, to

guide its implementation (source: ISO/IEC 42010:2007)

b. The structure of components, their inter-relationships, and the principles and guidelines
governing their design and evolution over time.

Other major definitions detail Enterprise Architecture is a set of principles, practices and processes,
that defines the structure as well as operations of the enterprise and its systems for effective
realisation of enterprise goals to enable an enterprise performance to be predictable, measurable and
manageable

The key factor in the above definitions for enterprise architecture is the focus on principles,
components and more importantly formal inter-relationships between components. Much of the
architecture we see today do not emphasize on formal relationships between participating
components which is brings the main problem of ambiguity and error within various architectural
layers.

The problem domain around failed programmes and effort lost in extensive and often repeated testing
lifecycles is primarily because of ambiguity in requirements (capture, analysis or engineering) and
then ambiguity between architecture and requirements and finally the cascading effect of ambiguity
between implementation and architecture

There is ambiguity because requirements are divorced from architecture and architecture is divorced
from implementation. As architects we write a lot of documentation and create a lot of great diagrams.

However, how many of us have really proven that what we have written in terms of
architecture is actually what is built finally? If proven, is the proof empirical or derived or
formal?

While empirical or derived proofs (through various kinds of testing) are okay for simple projects with
straight forward architectures, they do not water on large programmes and end up in extensive testing
cycles which are often repeated and involve huge efforts and wastage of time.

As a result of ambiguity we end up with:

 Poor Alignment of IT to business goals and objectives

 High Cost in managing complexity

 High cost of testing

 Lack of transparency and control in delivery and change management issues in large
programmes

 Poor re-use of key IT assets

 Lack of Business agility hindered by inefficient IT Architectures

So removing ambiguity by joining up things, moves us from “art to engineering”
leading to the industrialisation of IT through efficient use of architecture methods

Testable architectures are the foundation of removing this ambiguity. Testable Architecture enables
the architecture of a system to be described unambiguously using Choreography Description
Language (CDL) such that it may be tested against requirements and is used to generate
implementation artefacts for delivery thereby improving governance and control across large system
integration programmes.

If we can deliver a solution that connects requirements to architecture and to implementation, we shall
change the nature of complex systems delivery, reducing costs, mitigating delivery risks and
improving time to market of key business functionality

Testable architecture methodology uses a unique combination of abstraction, modelling and
simulation to the architecture definition process and the ordered interactions between participating
components coupled with any constraints on their implementations and behaviour. Testable
architecture is formal hence reduces defect injection across a programme lifecycle

Testable architecture is formally grounded and with strong type definition and has its foundations in
“pi-calculus” which is a formal communication framework developed by Prof. Robin Milner – Professor
Emeritus of Computer Science at the University of Cambridge and Turing award recipient:

Key benefits of Testable architectures:

 Improved delivery assurance

 Reduced cost of implementation and testing

 Increased quality of overall solution

 Increased agility of overall solution

Some of the noteworthy, real life implementations using testable architectures include:

 HL7 - Lifesciences principle messaging interchange standard (CDL provides the dynamic
model for message order enabling rapid deployment of HL7 Compliant services (a.k.a. SOA)

 ISDA – Derivatives principle message interchange standard (CDL provides the dynamic model
for confirmations, affirmations, etc.). Enabled rapid compliance to business protocols reducing
lifecycle costs

 Redhat - Principle System Description providing unique differentiator for Redhat’s SOA
platform. Part of the community edition of Overlord

TOGAF is THE OPEN GROUP ARCHITECTURE FRAMEWORK which is the collective effort of
many organisations (consulting, system integrators, and end users) within the architecture forum and
it details processes, methodology and artefacts for efficient and effective delivery of enterprise
architectures for any organisation regardless of the size (i.e. being scale invariant)

TOGAF 9 stands out as an important and well accepted standard for Enterprise Architecture with key
artefacts, methods and processes to detail architecture of any size or complexity. These components
and methods include:

 The main iterative crop circles framework to define architecture

 The content framework defining a clear standard for architecture documentation

 Reference Models for business, information and technology architecture

 Enterprise Continuum (contains the Architecture continuum and Solutions Continuum)

 Architecture Capability Framework (to help organisations build an architecture organisation)

The benefits using TOGAF’s Architecture Definition Method we have seen:

 Integration:
o Integrates with other enterprise architecture processes / frameworks (i.e Zachmann,

Gartner etc)
o Facilitates integration of enterprise wide processes (i.e. by collecting artefacts and

methods etc..)

 Efficiency
o Creates a repeatable and predictable process of developing enterprise architecture

content
o TOGAF ADM can be extended and customised as per the specific needs of the

enterprise for e.g. scaling

 Simplicity
o TOGAF ADM is Process Driven : Inputs, Outputs and Steps are specified for each

phase of the iterative framework

 Predictability of Outcome
o The outputs from one phase could be tracked back to the inputs for the next phase –

i.e TOGAF ADM links inputs to Outcomes

Testable Architecture Methodology

The diagram below gives a brief overview of the testable architecture methodology which
complements the TOGAF Iterative methodology given in the previous section across various
architecture views business, information, application and technology architectures

Alignment of Modelling Methods

Modelling languages like Archimate help alleviate the issues around ambiguity by defining enterprise
structure. However testable architecture aligns to TOGAF by describing the enterprise
communications behaviour. Testable architecture adds scale and formalisms to UML and auto
generates implementation artefacts that help in removal of ambiguity and thereby deliver robust
solutions. The diagram below shows a pictorial representation of the alignment between these
methods.

Testable Architecture and link to SAVARA

SAVARA, is the next generation of Testable Architecture’ methodology, that aims to give software
architects insight into IT implementations at the architecture and design stage, meaning business
scenarios can be modelled and changes made much earlier in the typical software testing cycle -
before a single line of code has been written. Empirical research from Roger. S. Pressman(an
internationally recognized consultant and author in software engineering) cost of correcting design
defects at the traditional testing stage to be around 200% more than correcting them in during
requirements or architecture stage. This is similar to research published by SEI Capability Maturity
Model. SAVARA aims to dramatically reduce testing expenditure and overall software development
costs through modelling and simulation and makes it enterprise scale.

With development budgets getting tighter and the need for agility becoming more important, there is
simply no need for architectural errors to still be present in the testing stage of IT projects. They’re
expensive and time consuming to fix and, crucial business requirements fall through the gaps. By
bringing in a high level of testing rigour, measurement and formalism to SOA and the software
development lifecycle, SAVARA will deliver real returns for customers, reducing the cost of ongoing
projects, and freeing up budget for further, revenue-generating initiatives

Testable Architecture’ the foundation of SAVARA ensures that artefacts defined in each phase of the
software development lifecycle (e.g. business requirements, architectural models, service designs,
code, etc.) can be verified for conformance. For example, architectural models can be verified against
requirements, service designs against architectural models and code against service designs. This
guarantees that the deployed systems can be shown to implement the originating business
requirements.

Epilogue

Better Enterprise Architectures are achieved through:

 Focus on components (business, information, application and technology) and their inter-
relationships across the enterprise

 Adherence to best practices for modelling to describe enterprise states and communications
behaviour

 Adoption of formal methods for enterprise modelling like Testable Architecture (CDL) to
ensure consistency and improve predictability of outcomes

 Adoption of testable architectures to improve architecture governance and control over
implementation artefacts

 Usage of Testable architecture as an extension to Enterprise architecture methods to help
clearly articulate formal descriptions for component inter-relationships

 Usage of Testable Architecture methodology to auto-generate detailed contracts and
implementation artefacts in adherence to functional and non functional system requirements

Further Reading
For further information please visit
http://www.jboss.org/savara
http://realisticenterprisearchitecture.blogspot.com/
http://pi4tech.blogspot.com/

http://www.jboss.org/savara
http://realisticenterprisearchitecture.blogspot.com/
http://pi4tech.blogspot.com/

