It’s possible to fire your own custom events at will during the execution of a process. Events are uniquely defined by the combination of a graph element (nodes, transitions, process definitions and superstates are graph elements) and an event-type (java.lang.String). jBPM defines a set of events that are fired for nodes, transitions and other graph elements. But as a user, you are free to fire your own events. In actions, in your own custom node implementations, or even outside the execution of a process instance, you can call the GraphElement.fireEvent(String eventType, ExecutionContext executionContext);. The names of the event types can be chosen freely.
Actions

Actions are pieces of java code that are executed upon events in the process execution. The graph is an important instrument in the communication about software requirements. But the graph is just one view (projection) of the software being produced. It hides many technical details. Actions are a mechanism to add technical details outside of the graphical representation. Once the graph is put in place, it can be decorated with actions. This means that java code can be associated with the graph without changing the structure of the graph. The main event types are entering a node, leaving a node and taking a transition.

Note the difference between an action that is placed in an event versus an action that is placed in a node. Actions that are put in an event are executed when the event fires. Actions on events have no way to influence the flow of control of the process. It is similar to the observer pattern. On the other hand, an action that is put on a node has the responsibility of propagating the execution.

Let's look at an example of an action on an event. Suppose we want to do a database update on a given transition. The database update is technically vital but it is not important to the business analyst.

A database update action
public class RemoveEmployeeUpdate implements ActionHandler {

 public void execute(ExecutionContext ctx) throws Exception {

 // get the fired employee from the process variables.

 String firedEmployee = (String) ctx.getContextInstance().getVariable("fired employee");

 // by taking the same database connection as used for the jbpm updates, we

 // reuse the jbpm transaction for our database update.

 Connection connection = ctx.getProcessInstance().getJbpmSession().getSession().getConnection();

 Statement statement = connection.createStatement();

 statement.execute("DELETE FROM EMPLOYEE WHERE ...");

 statement.execute();

 statement.close();

 }

}

<process-definition name="yearly evaluation">

 ...

 <state name="fire employee">

 <transition to="collect badge">

 <action class="com.nomercy.hr.RemoveEmployeeUpdate" />

 </transition>

 </state>

 <state name="collect badge">

 ...

</process-definition>
Custom action example

Actions are a mechanism to bind your custom java code into a jBPM process. Actions can be associated with its own nodes (if they are relevant in the graphical representation of the process). Or actions can be placed on events like e.g. taking a transition, leaving a node or entering a node. In that case, the actions are not part of the graphical representation, but they are executed when execution fires the events in a runtime process execution.

We'll start with a look at the action implementation that we are going to use in our example : MyActionHandler. This action handler implementation does not do really spectacular things... it just sets the boolean variable isExecuted to true. The variable isExecuted is static so it can be accessed from within the action handler as well as from the action to verify it's value.

// MyActionHandler represents a class that could execute
// some user code during the execution of a jBPM process.
public class MyActionHandler implements ActionHandler {

 // Before each test (in the setUp), the isExecuted member
 // will be set to false.
 public static boolean isExecuted = false;

 // The action will set the isExecuted to true so the
 // unit test will be able to show when the action
 // is being executed.
 public void execute(ExecutionContext executionContext) {

 isExecuted = true;

 }

}

As mentioned before, before each test, we'll set the static field MyActionHandler.isExecuted to false;

 // Each test will start with setting the static isExecuted
 // member of MyActionHandler to false.
 public void setUp() {

 MyActionHandler.isExecuted = false;

 }

We'll start with an action on a transition.

public void testTransitionAction() {

 // The next process is a variant of the hello world process.
 // We have added an action on the transition from state 's'
 // to the end-state. The purpose of this test is to show
 // how easy it is to integrate java code in a jBPM process.
 ProcessDefinition processDefinition = ProcessDefinition.parseXmlString(

 "<process-definition>" +

 " <start-state>" +

 " <transition to='s' />" +

 " </start-state>" +

 " <state name='s'>" +

 " <transition to='end'>" +

 " <action class='org.jbpm.tutorial.action.MyActionHandler' />" +

 " </transition>" +

 " </state>" +

 " <end-state name='end' />" +

 "</process-definition>"

);

 // Let's start a new execution for the process definition.
 ProcessInstance processInstance =

 new ProcessInstance(processDefinition);

 // The next signal will cause the execution to leave the start
 // state and enter the state 's'
 processInstance.signal();

 // Here we show that MyActionHandler was not yet executed.
 assertFalse(MyActionHandler.isExecuted);

 // ... and that the main path of execution is positioned in
 // the state 's'
 assertSame(processDefinition.getNode("s"),

 processInstance.getRootToken().getNode());

 // The next signal will trigger the execution of the root
 // token. The token will take the transition with the
 // action and the action will be executed during the
 // call to the signal method.
 processInstance.signal();

 // Here we can see that MyActionHandler was executed during
 // the call to the signal method.
 assertTrue(MyActionHandler.isExecuted);

 }

The next example shows the same action, but now the actions are placed on the enter-node and leave-node events respectively. Note that a node has more than one event type in contrast to a transition, which has only one event. Therefore actions placed on a node should be put in an event element.

ProcessDefinition processDefinition = ProcessDefinition.parseXmlString(

 "<process-definition>" +

 " <start-state>" +

 " <transition to='s' />" +

 " </start-state>" +

 " <state name='s'>" +

 " <event type='node-enter'>" +

 " <action class='org.jbpm.tutorial.action.MyActionHandler' />" +

 " </event>" +

 " <event type='node-leave'>" +

 " <action class='org.jbpm.tutorial.action.MyActionHandler' />" +

 " </event>" +

 " <transition to='end'/>" +

 " </state>" +

 " <end-state name='end' />" +

 "</process-definition>"

);

ProcessInstance processInstance =

 new ProcessInstance(processDefinition);

assertFalse(MyActionHandler.isExecuted);

// The next signal will cause the execution to leave the start
// state and enter the state 's'. So the state 's' is entered
// and hence the action is executed.
processInstance.signal();

assertTrue(MyActionHandler.isExecuted);

// Let's reset the MyActionHandler.isExecuted
MyActionHandler.isExecuted = false;

// The next signal will trigger execution to leave the
// state 's'. So the action will be executed again.
processInstance.signal();

// Voila.
assertTrue(MyActionHandler.isExecuted);

Decision handler

A decision handler is a java class that implements the DecisionHandler interface. The decision handler will be responsible for selecting the name of the outgoing transition.

public interface DecisionHandler {

 String decide(OpenExecution execution);

}

The handler is specified as a sub element of the decision.

Here's an example process of a decision using a DecisionHandler:

The decision handler example process
<process name="DecisionHandler">

 <start>

 <transition to="evaluate document" />

 </start>

 <decision name="evaluate document">

 <handler class="org.jbpm.examples.decision.handler.ContentEvaluation" />

 <transition name="good" to="submit document" />

 <transition name="bad" to="try again" />

 <transition name="ugly" to="give up" />

 </decision>

 <state name="submit document" />

 <state name="try again" />

 <state name="give up" />

</process>

The ContentEvaluation class looks like this

public class ContentEvaluation implements DecisionHandler {

 public String decide(OpenExecution execution) {

 String content = (String) execution.getVariable("content");

 if (content.equals("you're great")) {

 return "good";

 }

 if (content.equals("you gotta improve")) {

 return "bad";

 }

 return "ugly";

 }

}

Now, when we start a process instance and supply value you're great for variable content, then the ContentEvaluation will return String good and the process instance will arrive in activity Submit document.

Task assignment handler

An AssignmentHandler can be used to calculate the assignee and the candidates for a task programmatically.

public interface AssignmentHandler extends Serializable {

 /** sets the actorId and candidates for the given assignable. */

 void assign(Assignable assignable, OpenExecution execution) throws Exception;

}

Assignable is a common interface for Tasks and Swimlanes. So AssignmentHandlers can be used for tasks as well as swimlanes (see later).

assignment-handler is a sub element of the task element. It specifies a user code object.

Let's look at the task assignment example process.

[image: image1.png]O-C=)

The task assignment handler example process
<process name="TaskAssignmentHandler" xmlns="http://jbpm.org/4.3/jpdl">

 <start g="20,20,48,48">

 <transition to="review" />

 </start>

 <task name="review" g="96,16,127,52">

 <assignment-handler class="org.jbpm.examples.task.assignmenthandler.AssignTask">

 <field name="assignee">

 <string value="johndoe" />

 </field>

 </assignment-handler>
 <transition to="wait" />

 </task>

 <state name="wait" g="255,16,88,52" />

</process>

The referenced class AssignTask looks like this:

public class AssignTask implements AssignmentHandler {

 String assignee;

 public void assign(Assignable assignable, OpenExecution execution) {

 assignable.setAssignee(assignee);

 }

}

Please note that potentially, AssignmentHandler implementations can use the process variables and any other Java API to access resources like your application database to calculate the assignee and candidate users and groups.

Starting a new process instance of the TaskAssignmentHandler process will immediately bring the new execution to the task activity. A new review task is created and at that point, the AssignTask assignment handler is called. That will set johndoe as the assignee. So John Doe will find the task in his personal task list.

Events

Events specify points in a process on which a list of event listeners can be registered. When an execution passes that point in the process, the event listeners are notified. The events and listeners are not shown in the graphical view of the process, which makes them very interesting for implementing technical details. An event is fired by an element in the process definition like e.g. the process definition, an activity or a transition.

The EventListener interface looks like this:

public interface EventListener extends Serializable {

 void notify(EventListenerExecution execution) throws Exception;

}

All automatic activities (custom, java, script…) can be used as event listeners as well.

To associate a list of event listeners with a process or an activity, use the on element to group the event listeners and specifiy the event. on can be nested as a subelement of process or any activity.

To associate a list of event listeners with a transition take event, just include the event listeners directly in the transition element.

on attributes:
	Attribute
	Type
	Default
	Required?
	Description

	event
	{start | end}
	
	required
	name name of the event

on elements:
	Element
	Multiplicity
	Description

	event-listener
	0..*
	An event listener implementation object.

	any automatic activity
	0..*
	

event listener attributes:
Any automatic activities (including event-listener) that are placed on events can specify following additional attributes:

	Attribute
	Type
	Default
	Required?
	Description

	propagation
	{enabled | disabled | true | false | on | off}
	disabled
	optional
	indicates if the event listener should also be invoked for propagating events.

	continue
	{sync | async | exclusive}
	sync
	optional
	indicates if the execution should be continued asynchronously right before the event listener is executed. @see also Section 6.6, “Asynchronous continuations”

Event listener example

Let's look at an example process with event listeners:

[image: image2.png]SEEEENO)

Figure 6.24. The event listener example process
<process name="EventListener" xmlns="http://jbpm.org/4.3/jpdl">

 <on event="start">

 <event-listener class="org.jbpm.examples.eventlistener.LogListener">

 <field name="msg"><string value="start on process definition"/></field>

 </event-listener>

 </on>

 <start>

 <transition to="wait"/>

 </start>

 <state name="wait">

 <on event="start">

 <event-listener class="org.jbpm.examples.eventlistener.LogListener">

 <field name="msg"><string value="start on activity wait"/></field>

 </event-listener>

 </on>

 <on event="end">

 <event-listener class="org.jbpm.examples.eventlistener.LogListener">

 <field name="msg"><string value="end on activity wait"/></field>

 </event-listener>

 </on>

 <transition to="park">

 <event-listener class="org.jbpm.examples.eventlistener.LogListener">

 <field name="msg"><string value="take transition"/></field>

 </event-listener>

 </transition>

 </state>

 <state name="park"/>

</process>

LogListener will maintain a list of logs as a process variable:

public class LogListener implements EventListener {

 // value gets injected from process definition

 String msg;

 public void notify(EventListenerExecution execution) {

 List<String> logs = (List<String>) execution.getVariable("logs");

 if (logs==null) {

 logs = new ArrayList<String>();

 execution.setVariable("logs", logs);

 }

 logs.add(msg);

 execution.setVariable("logs", logs);

 }

}

Next, we start a new process instance.

ProcessInstance processInstance = executionService.startProcessInstanceByKey("EventListener");

Then the process instance executes up to the wait activity. So we provide a signal and that will cause it to execute till the end.

Execution execution = processInstance.findActiveExecutionIn("wait");

executionService.signalExecutionById(execution.getId());

The list of log messages will now look like this:

[start on process definition,

 start on activity wait,

 end on activity wait,

 take transition]

Custom
Invokes user code that implements custom behaviour of an activity.

A custom activity refers to user code. Let's look at the example:

<process name="Custom" xmlns="http://jbpm.org/4.3/jpdl">

 <start >

 <transition to="print dots" />

 </start>

 <custom name="print dots"

 class="org.jbpm.examples.custom.PrintDots">

 <transition to="end" />

 </custom>

 <end name="end" />

</process>

The custom activity behavior class PrintDots shows that it's possible to control the flow when implementing custom activity behaviors. In this case the PrintDots acitivity implementation will after printing dots wait in the activity until a signal is given.

public class PrintDots implements ExternalActivityBehaviour {

 private static final long serialVersionUID = 1L;

 public void execute(ActivityExecution execution) {

 String executionId = execution.getId();

 String dots = ...;

 System.out.println(dots);

 execution.waitForSignal();

 }

 public void signal(ActivityExecution execution,

 String signalName,

 Map<String, ?> parameters) {

 execution.take(signalName);

 }

}

java
The Java task. A process execution will execute the method of the class that is configured in this activity.

Table 6.22. java attributes:
	Attribute
	Type
	Default
	Required?
	Description

	class
	classname
	
	either 'class' or 'expr' has to be specified
	The fully qualified classname. See Section 6.7.2, “User code classloading” for classloading information. The user code object will be lazy initialized and cached as part of the process definition.

	expr
	expression
	
	either 'expr' or 'class' has to be specified
	An expression that returns the target object on which the method should be invoked.

	method
	methodname
	
	required
	The name of the method to invoke

	var
	variablename
	
	optional
	The name of the variable in which the return value should be stored.

Table 6.23. java elements:
	Element
	Multiplicity
	Description

	field
	0..*
	describes a configuration value to inject in a memberfield before the method is invoked.

	arg
	0..*
	method parameters

Consider the following example.

[image: image3.png]

A java task
<process name="Java" xmlns="http://jbpm.org/4.3/jpdl">

 <start >

 <transition to="greet" />

 </start>

 <java name="greet"

 class="org.jbpm.examples.java.JohnDoe"

 method="hello"

 var="answer"

 >

 <field name="state"><string value="fine"/></field>

 <arg><string value="Hi, how are you?"/></arg>

 <transition to="shake hand" />

 </java>

 <java name="shake hand"

 expr="#{hand}"

 method="shake"

 var="hand"

 >

 <arg><object expr="#{joesmoe.handshakes.force}"/></arg>

 <arg><object expr="#{joesmoe.handshakes.duration}"/></arg>

 <transition to="wait" />

 </java>

 <state name="wait" />

</process>

Classes involved:

public class JohnDoe {

 String state;

 Session session;

 public String hello(String msg) {

 if ((msg.indexOf("how are you?")!=-1)

 && (session.isOpen())

) {

 return "I'm "+state+", thank you.";

 }

 return null;

 }

}

public class JoeSmoe implements Serializable {

 static Map<String, Integer> handshakes = new HashMap<String, Integer>();

 {

 handshakes.put("force", 5);

 handshakes.put("duration", 12);

 }

 public Map<String, Integer> getHandshakes() {

 return handshakes;

 }

}

public class Hand implements Serializable {

 private boolean isShaken;

 public Hand shake(Integer force, Integer duration) {

 if (force>3 && duration>7) {

 isShaken = true;

 }

 return this;

 }

 public boolean isShaken() {

 return isShaken;

 }

}

The first java activity greet specifies that during its execution an instance of the class org.jbpm.examples.java.JohnDoe will be instantiated and the method hello of this class will be invoked on the resulting object. The variable named answer will contain the result of the invocation.

The class above reveals that it contains two fields named state and session and that the method hello accepts one argument. During the execution the values specified in the field and arg configuration elements will be used. The expected result of creating a process instance is that the process variable answer contains the string I'm fine, thank you..

The second java activity is named shake hand. It will resolve expression #{hand} and capture the resulting object as the target object. On that object, the method shake will be invoked. The two arguments will be calculated by resolving the respective expressions #{joesmoe.handshakes.force} and #{joesmoe.handshakes.duration}. The resulting object is a mofied version of the hand and var="hand" will cause the modified hand to overwrite the old hand variable value.

