
© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction1

Developing an Editor for Directed Graphs

An Introduction to the Eclipse Graphical
Editing Framework

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction2

Speaker

 Koen Aers
 JBoss, a Division of Red Hat

 JBoss jBPM (http://labs.jboss.org/jbossjbpm)

 JBoss Tools (http://labs.jboss.org/tools)

 => Graphical Process Designer
(http://labs.jboss.org/jbossjbpm/gpd)

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction3

Agenda

 What is GEF?
 GEF Applied : A Graph Editor

 An Empty Graph Editor

 Adding the Nodes

 Doing Things With Nodes

 Showing Connections

 Creating New Nodes and Connections

 Adding Delete Support

 Final Reflections

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction4

What is GEF?

 Graphical Editing Framework
 Create a Rich Graphical Editor
 Consists of 2 plug-in

 Draw2D : layout and rendering toolkit for displaying graphics

 GEF : framework using the old Smalltalk MVC principles
 MVC : Model, Figure, EditPart

 Input events are translated to requests

 EditPart has a chain-of-responsibility of so-called EditPolicies

 EditPolicies translate the requests into GEF Commands when appropriate

 Commands get executed and result in model changes

 Model is observed by EditPart

 When model changes, EditPart refreshes the view

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction5

Structure of a Typical GEF Editor

GraphEditor

PaletteViewer

EditDomain PaletteRoot

GraphicalViewer

EditPartFactory

ConnectionEditPart

NodeEditPart

RootEditPart

GraphEditPart

Graph

Node

Connection

observes

observes

observes

creates

1

1..n

1

1

1

1

1

1

1
1..n

1..n

1..n

1..n

1..n

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction6

Typical GEF MVC Interactions

NodeEditPartNodeFigure

NodeGraphicalNodeEditPolicy

ConnectionCreateCommand

NodeComponentEditPolicy

NodeDeleteCommand

Node

Graph

Connection

refreshes

creates

creates
modifies

creates

modifies

observes
1..n

1..n

1

1

1

1

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction7

An Empty Graph Editor

 Eclipse Plug-in with Editor
 Add a GraphicalViewer
 Add a RootEditPart
 Define the Graph model
 Define the GraphEditPart
 Define and Add the EditPartFactory

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction8

An Empty Editor for Directed Graphs

GraphEditor

GraphicalViewer

EditPartFactory

RootEditPart

GraphEditPart

Graph

creates

1

11 1..n

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction9

Eclipse Plug-in with Editor
<plugin
 id="org.jbpm.graph.ui"
 name="JBoss jBPM Graph Designer"
 version=“1.0.0"
 provider-name="JBoss, a Division of Red Hat"
 class="org.jbpm.graph.ui.GraphPlugin">
 …
 <extension point = "org.eclipse.ui.editors">
 <editor
 id = "org.jbpm.graph.ui.editor.GraphEditor"
 name = "First jBPM Graph Editor"
 icon = "icons/full/obj16/par_obj.gif"
 extensions = "par"
 class = "org.jbpm.graph.ui.editor.GraphEditor" >
 </editor>
 </extension>
</plugin>

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction10

Eclipse Plug-in with Editor

public class GraphEditor extends EditorPart {
 …
 public void init(IEditorSite site, IEditorInput input)
 throws PartInitException {
 setSite(site);
 setInput(input);
 }
 …
 public void createPartControl(Composite parent) {
 Label label = new Label(parent, SWT.NONE);
 label.setText("Hello from first jBPM Graph Editor!");
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction11

Eclipse Plug-in with Editor

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction12

Add an EditPartViewer

 GraphicalViewer is special kind of EditPartViewer
 An adapter on an SWT Control that manages the EditPart
 Populated by setting its contents

public void createPartControl(Composite parent) {
 ScrollingGraphicalViewer viewer =
 new ScrollingGraphicalViewer();
 viewer.createControl(parent);

viewer.getControl().setBackground(ColorConstants.white);
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction13

Add an EditPartViewer

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction14

Add the RootEditPart

 Bridges the gap between the EditPartViewer and its contents
 Can provide for all kinds of services : zooming, freeform figures,

etc.

public void createPartControl(Composite parent) {
 ScrollingGraphicalViewer viewer =
 new ScrollingGraphicalViewer();
 viewer.createControl(parent);
 viewer.setRootEditPart(new ScalableFreeformRootEditPart());
 viewer.getControl().setBackground(ColorConstants.white);
}

http://127.0.0.1:59294/help/topic/org.eclipse.gef.doc.isv/reference/api/org/eclipse/gef/EditPartViewer.html

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction15

Add the EditPartFactory

 A factory for creating new EditParts
 Used when EditPart of EditPartViewer wants to create a new

EditPart
 Used when setting contents of EditPartViewer

public void createPartControl(Composite parent) {
 …
 viewer.setRootEditPart(new ScalableFreeformRootEditPart());
 viewer.getControl().setBackground(ColorConstants.white);
 viewer.setEditPartFactory(new GraphEditPartFactory());
 viewer.setContents(new Graph());
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction16

Define the Graph Model

 Initial simplistic model
 Used as the contents of the GraphicalViewer

public class Graph {}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction17

Define the GraphEditPartFactory

 Only Graph objects are considered
 Return a GraphEditPart instance

public class GraphicalEditPartFactory
 implements EditPartFactory {

 public EditPart createEditPart(
 EditPart context, Object model) {
 if (model instanceof Graph) {
 return new GraphEditPart((Graph)model);
 } else {
 return null;
 }
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction18

Define the GraphEditPart
public class GraphEditPart
 extends AbstractGraphicalEditPart {

 public GraphEditPart(Graph graph) {
 setModel(graph);
 }

 protected IFigure createFigure() {
 FreeformLayer layer = new FreeformLayer();
 layer.setLayoutManager(new FreeformLayout());
 layer.setBorder(new LineBorder(1));
 return layer;
 }

 protected void createEditPolicies() {}

}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction19

Editor Showing Empty Graph

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction20

Adding the Nodes

 The Model Class : Node
 Graphical Representation : NodeFigure
 The Controller : NodeEditPart
 Update the GraphEditPartFactory
 Update the GraphEditPart

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction21

Adding Nodes to the Editor

GraphEditor

GraphicalViewer

EditPartFactory

NodeEditPart

RootEditPart

GraphEditPart

Graph

Node

observes

observescreates

1

1

1

1 1..n

1..n

1..n

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction22

Define the Model : Node

public class Node {
 Rectangle constraint;
 String name;
 public Rectangle getConstraint() {
 return constraint;
 }
 public void setConstraint(Rectangle constraint) {
 this.constraint = constraint;
 }
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction23

Define the Model : Graph Revisited

 Graphs manage a list of nodes

public class Graph {
 List nodes;
 public List getNodes() {
 if (nodes == null) nodes = new ArrayList();
 return nodes;
 }
 public void addNode(Node node) {
 getNodes().add(node);
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction24

Define the Model : ContentProvider

public void createPartControl(Composite parent) {
 …
 viewer.setContents(
 ContentProvider.INSTANCE.newSampleGraph());
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction25

ContentProvider Continued

public class ContentProvider {
 public static final ContentProvider INSTANCE =
 new ContentProvider();
 public Graph newSampleGraph() {
 Graph result = new Graph();
 result.addNode(newNode(200, 150, 65, 35, “first”));
 result.addNode(newNode(300, 250, 65, 35, “second”));
 result.addNode(newNode(100, 300, 65, 35, "third”));
 return result;
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction26

ContentProvider Continued

public class ContentProvider {
 public static final ContentProvider INSTANCE =
 new ContentProvider();
 …
 private Node newNode(
 int x, int y, int width, int height, String name) {
 Node result = new Node();
 result.setConstraint(
 new Rectangle(new Point(x, y),
 new Dimension(width, height)));
 result.setName(name);
 return result;
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction27

Define the View : NodeFigure
 Mostly using the Draw2D framework

public class NodeFigure extends Figure {
 private Label label;
 private RectangleFigure rectangle;
 public NodeFigure() {
 setLayoutManager(new XYLayout());
 rectangle = new RectangleFigure();
 add(rectangle);
 label = new Label();
 add(label);
 }
 public Label getLabel() {
 return label;
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction28

Define the View : NodeFigure (ct’d)

public class NodeFigure extends Figure {
 …
 public void paintFigure(Graphics g) {
 Rectangle r = getBounds().getCopy();
 setConstraint(
 rectangle, new Rectangle(0, 0, r.width, r.height));

 setConstraint(
 label, new Rectangle(0, 0, r.width, r.height));

 rectangle.invalidate();
 label.invalidate();
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction29

Define the Controller : NodeEditPart

public class NodeEditPart extends AbstractGraphicalEditPart {
 public NodeEditPart(Node node) { setModel(node); }
 protected IFigure createFigure() { return new
NodeFigure(); }
 protected void createEditPolicies() {}
 public void refreshVisuals() {
 NodeFigure figure = (NodeFigure)getFigure();
 Node node = (Node)getModel();
 GraphEditPart parent = (GraphEditPart)getParent();
 figure.getLabel().setText(node.getName());
 Rectangle r = new Rectangle(node.getConstraint());
 parent.setLayoutConstraint(this, figure, r);
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction30

GraphEditPartFactory Revisited

public class GraphicalEditPartFactory
 implements EditPartFactory {

 public EditPart createEditPart(
 EditPart context, Object model) {
 if (model instanceof Graph) {
 return new GraphEditPart((Graph)model);
 } else if (model instanceof Node) {
 return new NodeEditPart((Node)model);
 } else {
 return null;
 }
 }

}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction31

GraphEditPart Revisited

public class GraphEditPart
extends AbstractGraphicalEditPart {
 public GraphEditPart(Graph graph) {
 setModel(graph);
 }
 protected List getModelChildren() {
 return ((Graph)getModel()).getNodes();
 }
 protected IFigure createFigure() {
 FreeformLayer layer = new FreeformLayer();
 layer.setLayoutManager(new FreeformLayout());
 layer.setBorder(new LineBorder(1));
 return layer;
 }
 protected void createEditPolicies() {}
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction32

Adding the Nodes : the Result

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction33

Doing Things With Nodes

 Adding the Spine : EditDomain
 Transform Requests into Commands : EditPolicy
 Implementing Commands to Modify the Model
 Having the EditParts React to Model Changes : Observer
 Undo and Redo Support: ActionRegistry and

ActionBarContributor

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction34

The Node Move/Resize Scenario

NodeEditPartNodeFigure

GraphXYLayoutEditPolicy NodeChangeConstraintComman
d

Node

refreshes

creates

modifies

observes

1

1

1

GraphEditPart

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction35

GEF’s Spine : the EditDomain Class

 State of a ‘GEF Application’
 CommandStack

 One or more EditPartViewers

 Active Tool
 Tied with an Eclipse IEditorPart

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction36

Adding the EditDomain

public class GraphEditor extends EditorPart {
 private EditDomain editDomain;
 …
 public void init(IEditorSite site, IEditorInput input)
 throws PartInitException {
 …
 initEditDomain()
 }
 private void initEditDomain() {
 editDomain = new DefaultEditDomain(this);
 }
 public void createPartControl(Composite parent) {
 …
 editDomain.addViewer(viewer);
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction37

NodeChangeConstraintCommand

public class NodeChangeConstraintCommand extends Command {
 private Rectangle newConstraint;
 private Rectangle oldConstraint;
 private Node node;
 public void execute() {
 if (oldConstraint == null)
 oldConstraint = new Rectangle(node.getConstraint());
 node.setConstraint(newConstraint);
 }
 public void undo() {node.setConstraint(oldConstraint);}
 public void setNewConstraint(Rectangle newConstraint) {
 this.newConstraint = newConstraint;
 }
 public void setNode(Node node) { this.node = node; }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction38

GraphXYLayoutEditPolicy

public class GraphXYLayoutEditPolicy
extends XYLayoutEditPolicy {
 protected Command createChangeConstraintCommand(
 EditPart child, Object constraint) {
 NodeChangeConstraintCommand changeConstraintCommand =
 new NodeChangeConstraintCommand();
 changeConstraintCommand.setNode((Node)child.getModel());
 changeConstraintCommand.setNewConstraint(
 (Rectangle)constraint);
 return changeConstraintCommand;
 }
 // We use a stub implementation for the other methods
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction39

GraphEditPart Revisited Again

 Editparts maintain lists of EditPolicies
 Chain of responsability enabling certain commands

public class GraphEditPart
extends AbstractGraphicalEditPart {
 …
 protected void createEditPolicies() {
 installEditPolicy(
 EditPolicy.LAYOUT_ROLE,
 new GraphXYLayoutEditPolicy());
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction40

Node/NodeEditPart Revisited

 Nodes notify changes to listeners : Observable

public class Node extends Observable {
 …
 public void setConstraint(Rectangle constraint) {
 this.constraint = constraint;
 setChanged();
 notifyObservers();
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction41

Node/NodeEditPart Revisited

 NodeEditParts should respond to the changes of the Node :
Observer

public class NodeEditPart
extends AbstractGraphicalEditPart implements Observer {
 …
 public void activate() {
 if (!isActive()) ((Node)getModel()).addObserver(this);
 super.activate();
 }
 public void deactivate() {
 if (isActive()) ((Node)getModel()).deleteObserver(this);
 super.deactivate();
 }
 public void update(Observable arg0, Object arg1) {
 refreshVisuals();
 }

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction42

Selectable, Moveable, Resizable Nodes

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction43

Undo and Redo Support

 Add an ActionRegistry : container for Editor Actions
 Implement and register the EditorActionContributor
 Keep track of the Command events : CommandStackListener
 Adapt the Editor to the CommandStack class

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction44

Add the ActionRegistry
public class GraphEditor extends EditorPart {
 private ActionRegistry actionRegistry;
 …
 public void init(IEditorSite site, IEditorInput input)
 throws PartInitException {
 …
 initActionRegistry();
 }
 private void initActionRegistry() {
 actionRegistry = new ActionRegistry();
 actionRegistry.registerAction(new UndoAction(this));
 actionRegistry.registerAction(new RedoAction(this));
 }
 public ActionRegistry getActionRegistry() {
 return actionRegistry;
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction45

Register the ActionBarContributor

 Defines the actions for the editor
 Registered in the plugin.xml

<plugin
 …
 <extension point = "org.eclipse.ui.editors">
 <editor
 id = "org.jbpm.graph.ui.editor.GraphEditor“
 …
 class = "org.jbpm.graph.ui.editor.GraphEditor"
 contributorClass=
 "org.jbpm.graph.ui.editor.ActionBarContributor" >
 </editor>
 </extension>
</plugin>

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction46

Implement the ActionBarContributor

public class ActionBarContributor
extends EditorActionBarContributor {
 public void setActiveEditor(IEditorPart targetEditor) {
 IActionBars actionBars = getActionBars();
 if (actionBars == null) return;
 String undoId = ActionFactory.UNDO.getId();
 String redoId = ActionFactory.REDO.getId();
 ActionRegistry actionRegistry =
 ((GraphEditor)targetEditor).getActionRegistry();
 actionBars.setGlobalActionHandler(
 undoId, actionRegistry.getAction(undoId));
 actionBars.setGlobalActionHandler(
 redoId, actionRegistry.getAction(redoId));
 actionBars.updateActionBars();
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction47

Define a CommandStackListener

public class GraphEditorListener
implements CommandStackListener {
 private ActionRegistry actionRegistry;
 public GraphEditorListener(
 ActionRegistry registry) {
 this.actionRegistry = registry;
 }
 public void commandStackChanged(EventObject event) {
 Iterator iterator = actionRegistry.getActions();
 while (iterator.hasNext()) {
 Object action = iterator.next();
 if (action instanceof UpdateAction)
 ((UpdateAction)action).update();
 }
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction48

Add a CommandStackListener

 Update the actions in the registry whenever the
CommandStack’s state changes

public class GraphEditor extends EditorPart {
 …
 public void init(IEditorSite site, IEditorInput input)
 throws PartInitException {
 …
 initGraphEditorListener();
 }
 private void initGraphEditorListener() {
 editDomain.getCommandStack().addCommandStackListener(
 new GraphEditorListener(actionRegistry));
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction49

Adapt the Editor to CommandStack

 Using the IAdaptable interface extended by IEditorPart

public class GraphEditor extends EditorPart {
 …
 public Object getAdapter(Class adapter) {
 if (adapter == CommandStack.class) {
 return editDomain.getCommandStack();
 }
 return super.getAdapter(adapter);
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction50

Undo and Redo Demo

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction51

Showing Connections

 The Model Class : Connection
 The Controller and Graphical Representation :

 ConnectionEditPart

 PolyLineConnection

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction52

Add the Connection Model Class
public class Connection {
 private Node source, target;
 public Node getSource() { return source; }
 public void setSource(Node source) {
 if (this.source != null)
 source.removeSourceConnection(this);
 this.source = source;
 source.addSourceConnection(this);
 }
 public Node getTarget() { return target; }
 public void setTarget(Node target) {
 if (this.target != null)
 target.removeTargetConnection(this);
 this.target = target;
 target.addTargetConnection(this);
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction53

Update the Node Model Class

public class Node extends Observable {
 …
 private List sourceConnections, targetConnections;
 …
 public List getSourceConnections() {
 if (sourceConnections == null)
 sourceConnections = new ArrayList();
 return sourceConnections;
 }
 public List getTargetConnections() {
 if (targetConnections == null)
 targetConnections = new ArrayList();
 return targetConnections;
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction54

Update the Node Model Class (ctn’d)

public class Node extends Observable {
 …
 public void addSourceConnection(Connection connection) {
 getSourceConnections().add(connection);
 }
 public void addTargetConnection(Connection connection) {
 getTargetConnections().add(connection);
 }
 public void removeSourceConnection(Connection connection) {
 getSourceConnections().remove(connection);
 }
 public void removeTargetConnection(Connection connection) {
 getTargetConnections().remove(connection);
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction55

Update the ContentProvider
public class ContentProvider {
 …
 public Graph newSampleGraph() {
 Graph result = new Graph();
 …
 newConnection(first, second);
 newConnection(first, third);
 newConnection(second, third);
 return result;
 }
 private Connection newConnection(Node source, Node target) {
 Connection result = new Connection();
 result.setSource(source);
 result.setTarget(target);
 return result;
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction56

Define the ConnectionEditPart

 Join source and target EditParts
 Figure is typically a line between the two nodes

public class ConnectionEditPart
extends AbstractConnectionEditPart {
 public ConnectionEditPart(Connection connection) {
 setModel(connection);
 }
 protected void createEditPolicies() {}
 protected IFigure createFigure() {
 return new PolylineConnection();
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction57

GraphicalEditPartFactory Revisited

public class GraphicalEditPartFactory
implements EditPartFactory {
 public EditPart createEditPart(
 EditPart context, Object model) {
 if (model instanceof Graph) {
 return new GraphEditPart((Graph)model);
 } else if (model instanceof Node) {
 return new NodeEditPart((Node)model);
 } else if (model instanceof Connection){
 return new ConnectionEditPart((Connection)model);
 } else {
 return null;
 }
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction58

NodeEditPart Revisited

 Connections can exist without a model
 Connections cannot exist without a source and a target
 Burden of obtaining the source and target connections is on the

NodeEditPart and not on the Node model

public class NodeEditPart
extends AbstractGraphicalEditPart implements Observer {
 …
 protected List getModelSourceConnections() {
 return ((Node)getModel()).getSourceConnections();
 }
 protected List getModelTargetConnections() {
 return ((Node)getModel()).getTargetConnections();
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction59

Nodes and Connections

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction60

Creating Nodes and Connections

 Splitting the Canvas : SashForm and PaletteViewer
 Adding the Palette : PaletteRoot and its Tools
 Create Nodes : NodeCreateCommand
 Create Connections :

 GraphicalNodeEditPolicy

 ConnectionCreateCommand

 ConnectionAnchor

 NodeEditPart interface

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction61

GraphEditor Revisited Once More

 Refactor createPartControl
 Add SashForm to parent

 Add PaletteViewer and GraphViewer

public class GraphEditor extends EditorPart {
 …
 public void createPartControl(Composite parent) {
 SashForm form = new SashForm(parent, SWT.HORIZONTAL);
 createPaletteViewer(form);
 createGraphViewer(form);
 form.setWeights(new int[] { 15, 85 });
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction62

GraphEditor Revisited Once More (ctn’d)

public class GraphEditor extends EditorPart {
 …
 private void createPaletteViewer(Composite parent) {
 PaletteViewer viewer = new PaletteViewer();
 viewer.createControl(parent);
 editDomain.setPaletteViewer(viewer);
 editDomain.setPaletteRoot(new PaletteRoot());
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction63

GraphEditor Revisited Once More (ctn’d)

public class GraphEditor extends EditorPart {
 …
private void createGraphViewer(Composite parent) {
 ScrollingGraphicalViewer viewer =
 new ScrollingGraphicalViewer();
 viewer.setRootEditPart(new ScalableFreeformRootEditPart());
 viewer.createControl(parent);
 viewer.getControl().setBackground(ColorConstants.white);
 viewer.setEditPartFactory(new GraphicalEditPartFactory());
 viewer.setContents(
 ContentProvider.INSTANCE.newSampleGraph());
 editDomain.addViewer(viewer);
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction64

Editor with Empty Palette

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction65

Populate the Palette : PaletteRoot

public class GraphPalette extends PaletteRoot {
 public GraphPalette() {
 PaletteGroup group = new PaletteGroup("Graph Controls");
 SelectionToolEntry entry = new SelectionToolEntry();
 group.add(entry);
 setDefaultEntry(entry);
 group.add(new PaletteSeparator());
 group.add(new CreationToolEntry(
 “Node”, “Creates a new node.”,
 new NodeFactory(), null, null));
 group.add(new ConnectionCreationToolEntry(
 “Connection”, “Creates a new connection.”,
 new ConnectionFactory(), null, null));
 add(group);
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction66

Populate the Palette : CreationFactory

public class NodeFactory implements CreationFactory {
 public Object getNewObject() { return new Node(); }
 public Object getObjectType() { return Node.class; }
}

public class ConnectionFactory implements CreationFactory {
 public Object getNewObject() { return new Connection(); }
 public Object getObjectType() { return Connection.class; }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction67

Populate the Palette : GraphEditor

public class GraphEditor extends EditorPart {
 …
 private void createPaletteViewer(Composite parent)
{
 PaletteViewer viewer = new PaletteViewer();
 viewer.createControl(parent);
 editDomain.setPaletteViewer(viewer);
 editDomain.setPaletteRoot(new GraphPalette());
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction68

Editor With Populated Palette

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction69

Creating New Nodes

 Define NodeCreateCommand
 Implement getCreateCommand
 Make Graph/GraphEditPart Observer/Observable

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction70

Define NodeCreateCommand
public class NodeCreateCommand extends Command {
 …
 private Node node;
 private Rectangle constraint;
 private Graph parent;
 public void execute() {
 setNodeConstraint();
 setNodeName();
 parent.addNode(node);
 }
 private void setNodeName() {
 node.setName(parent.getNextNodeName());
 }
 private void setNodeConstraint() {
 if (constraint !=
null)node.setConstraint(constraint);
 }
 …

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction71

Define NodeCreateCommand (ctn’d)

public class NodeCreateCommand extends Command {
 private static final Dimension INITIAL_NODE_DIMENSION =
 new Dimension(65, 35);
 …
 public void undo() {parent.removeNode(node);}
 public void setNode(Node node) {this.node = node;}
 public void setLocation(Point location) {
 this.constraint = new Rectangle(
 location, INITIAL_NODE_DIMENSION);
 }
 public void setParent(Graph parent) {
 this.parent = parent;
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction72

Graph Revisited Again
public class Graph {
 …
 public String getNextNodeName() {
 int runner = 1;
 while (true) {
 String candidate = "node" + runner;
 if (getNodeByName(candidate) == null) return candidate;
 runner ++;
 }
 }
 private Node getNodeByName(String candidate) {
 for (int i = 0; i < getNodes().size(); i++)
 if (candidate.equals(((Node)getNodes().get(i)).getName()))
 return (Node)getNodes().get(i);
 return null;
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction73

GraphXYLayoutPolicy Revisited

 Implement getCreateCommand
 Only handle requests to create Nodes

public class GraphXYLayoutEditPolicy
extends XYLayoutEditPolicy {
 …
 protected Command getCreateCommand(CreateRequest request) {
 if (request.getNewObjectType().equals(Node.class)) {
 NodeCreateCommand result = new NodeCreateCommand();
 result.setLocation(request.getLocation());
 result.setNode((Node)request.getNewObject());
 result.setParent((Graph)getHost().getModel());
 return result;
 }
 return null;
 }

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction74

Graph Revisited Once More

public class Graph extends Observable {
 …
 public void addNode(Node node) {
 getNodes().add(node);
 setChanged();
 notifyObservers();
 }
 public void removeNode(Node node) {
 getNodes().remove(node);
 setChanged();
 notifyObservers();
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction75

Editor With Some Extra Nodes

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction76

Creating New Connections

 Define ConnectionCreateCommand
 Define NodeGraphicalNodeEditPolicy

 Implement getConnectionCreateCommand

 Implement getConnectionCompleteCommand
 Make connection changes observable
 Install NodeGraphicalNodeEditPolicy
 Make our NodeEditPart implement the

org.eclipse.gef.NodeEditPart interface
 Obtaining the ConnectionAnchor

 Observe the connection changes of the model
 Get rid of the ContentProvider

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction77

Define ConnectionCreateCommand

public class ConnectionCreateCommand extends Command {
 private Node source;
 private Node target;
 private Connection connection;
 public void setSource(Node source) {
 this.source = source;
 }
 public void setTarget(Node target) {
 this.target = target;
 }
 public void setConnection(Connection connection) {
 this.connection = connection;
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction78

ConnectionCreateCommand (ctn’d)

public class ConnectionCreateCommand extends Command {
 …
 public boolean canExecute() {
 return source != null && target != null;
 }
 public void execute() {
 connection.setSource(source);
 connection.setTarget(target);
 }
 public void undo() {
 connection.setSource(null);
 connection.setTarget(null);
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction79

Define NodeGraphicalNodeEditPolicy

public class NodeGraphicalNodeEditPolicy
extends GraphicalNodeEditPolicy {
 protected Command getConnectionCreateCommand(
 CreateConnectionRequest request) {
 ConnectionCreateCommand result =
 new ConnectionCreateCommand();
 result.setSource((Node)getHost().getModel());
 result.setConnection((Connection)request.getNewObject());
 request.setStartCommand(result);
 return result;
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction80

Define NodeGraphicalNodeEditPolicy (ctn’d)

public class NodeGraphicalNodeEditPolicy
extends GraphicalNodeEditPolicy {
 …
 protected Command getConnectionCompleteCommand(
 CreateConnectionRequest request) {
 ConnectionCreateCommand result =
 (ConnectionCreateCommand)request.getStartCommand();
 result.setTarget((Node)getHost().getModel());
 return result;
 }
 … //Stubs for the remaining methods
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction81

Node Revisited Again

public class Node extends Observable {
 …
 public void addSourceConnection(Connection connection) {
 getSourceConnections().add(connection);
 notifyObservers();
 }
 public void addTargetConnection(Connection connection) {
 getTargetConnections().add(connection);
 notifyObservers();
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction82

Node Revisited Again (ctn’d)

public class Node extends Observable {
 …
 public void removeSourceConnection(Connection connection) {
 getSourceConnections().remove(connection);
 notifyObservers();
 }
 public void removeTargetConnection(Connection connection) {
 getTargetConnections().remove(connection);
 notifyObservers();
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction83

NodeEditPart Revisited Again

 Installation of the NodeGraphicalNodeEditPolicy

public class NodeEditPart
extends AbstractGraphicalEditPart
implements Observer {
 …
 protected void createEditPolicies() {
 installEditPolicy(
 EditPolicy.GRAPHICAL_NODE_ROLE,
 new NodeGraphicalNodeEditPolicy());
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction84

NodeEditPart Revisited Again (ctn’d)

 Observing connection model changes

public class NodeEditPart
extends AbstractGraphicalEditPart
implements Observer {
 …
 public void update(Observable observable, Object message) {
 refreshVisuals();
 refreshSourceConnections();
 refreshTargetConnections();
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction85

NodeEditPart Revisited Again (ctn’d)

public class NodeEditPart extends AbstractGraphicalEditPart
implements Observer, org.eclipse.gef.NodeEditPart {
 …
 public ConnectionAnchor getSourceConnectionAnchor(
 ConnectionEditPart connection) {
 return ((NodeFigure)getFigure()).getConnectionAnchor();
 }
 public ConnectionAnchor getTargetConnectionAnchor(
 ConnectionEditPart connection) {
 return ((NodeFigure)getFigure()).getConnectionAnchor();
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction86

NodeEditPart Revisited Again (ctn’d)

public class NodeEditPart extends AbstractGraphicalEditPart
implements Observer, org.eclipse.gef.NodeEditPart {
 …
 public ConnectionAnchor getSourceConnectionAnchor(
 Request request) {
 return ((NodeFigure)getFigure()).getConnectionAnchor();
 }
 public ConnectionAnchor getTargetConnectionAnchor(
 Request request) {
 return ((NodeFigure)getFigure()).getConnectionAnchor();
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction87

NodeFigure Revisited

 Create the connection anchor lazily

public class NodeFigure extends Figure {
 private ConnectionAnchor connectionAnchor;
 …
 public ConnectionAnchor getConnectionAnchor() {
 if (connectionAnchor == null) {
 connectionAnchor = new ChopboxAnchor(this);
 }
 return connectionAnchor;
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction88

Eliminate ContentProvider

 Delete the ContentProvider class
 Modify the createGraphViewer method in class GraphEditor

public class GraphEditor extends EditorPart {
 …
 private void createGraphViewer(Composite parent) {
 ScrollingGraphicalViewer viewer =
 new ScrollingGraphicalViewer();
 viewer.setRootEditPart(new ScalableFreeformRootEditPart());
 viewer.createControl(parent);
 viewer.getControl().setBackground(ColorConstants.white);
 viewer.setEditPartFactory(new GraphicalEditPartFactory());
 viewer.setContents(new Graph());
 editDomain.addViewer(viewer);
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction89

GraphEditor With Connection Support

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction90

Delete Support

 Include DeleteAction in ActionRegistry
 Selection Support :

 SelectionProvider

 SelectionListener
 Update ActionBarContributor
 Deleting Nodes :

 NodeDeleteCommand

 NodeComponentEditPolicy
 Deleting Connections :

 ConnectionDeleteCommand

 ConnectionEditPolicy

 ConnectionEndpointEditPolicy

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction91

ActionRegistry Revisited

public class GraphEditor extends EditorPart {
 private ActionRegistry actionRegistry;
 …
 private void initActionRegistry() {
 actionRegistry = new ActionRegistry();
 actionRegistry.registerAction(new UndoAction(this));
 actionRegistry.registerAction(new RedoAction(this));
 actionRegistry.registerAction(
 new DeleteAction((WorkbenchPart)this));
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction92

GraphViewer Is SelectionProvider

public class GraphEditor extends EditorPart {
 …
 private void createGraphViewer(Composite parent) {
 ScrollingGraphicalViewer viewer =
 new ScrollingGraphicalViewer();
 viewer.setRootEditPart(new ScalableFreeformRootEditPart());
 viewer.createControl(parent);
 viewer.getControl().setBackground(ColorConstants.white);
 viewer.setEditPartFactory(new GraphicalEditPartFactory());
 viewer.setContents(new Graph());
 editDomain.addViewer(viewer);
 getSite().setSelectionProvider(viewer);
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction93

Define the SelectionListener

public class GraphEditorListener
implements CommandStackListener, ISelectionListener {
 …
 public void commandStackChanged(EventObject event) {
 updateActions();
 }
 public void selectionChanged(
 IWorkbenchPart part, ISelection selection) {
 updateActions();
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction94

Define the SelectionListener (ctn’d)

public class GraphEditorListener
implements CommandStackListener, ISelectionListener {
 …
 private void updateActions() {
 Iterator iterator = actionRegistry.getActions();
 while (iterator.hasNext()) {
 Object action = iterator.next();
 if (action instanceof UpdateAction)
 ((UpdateAction)action).update();
 }
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction95

Add the SelectionListener

public class GraphEditor extends EditorPart {
 …
 private void initGraphEditorListener() {
 GraphEditorListener graphEditorListener =
 new GraphEditorListener(actionRegistry));
 ISelectionService selectionService =
 getSite().getWorkbenchWindow().getSelectionService();
 editDomain.getCommandStack().addCommandStackListener(
 graphEditorListener);
 selectionService.addSelectionListener(
 graphEditorListener);
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction96

Update ActionbarContributor

public class ActionBarContributor
extends EditorActionBarContributor {
 public void setActiveEditor(IEditorPart targetEditor) {
 …
 String deleteId = ActionFactory.DELETE.getId();
 actionBars.setGlobalActionHandler(
 deleteId, actionRegistry.getAction(deleteId));
 actionBars.updateActionBars();
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction97

Define NodeDeleteCommand
public class NodeDeleteCommand extends Command {
 private Node node;
 private Graph graph;
 private List connections;
 private Map connectionSources, connectionTargets;
 public void setNode(Node node) { this.node = node; }
 public void setGraph(Graph graph) { this.graph = graph; }
 public void execute() {
 detachConnections();
 graph.removeNode(node);
 }
 public void undo() {
 graph.addNode(node);
 reattachConnections();
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction98

Define NodeDeleteCommand (ctn’d)
public class NodeDeleteCommand extends Command {
 …
 private void detachConnections() {
 connections = new ArrayList();
 connectionSources = new HashMap();
 connectionTargets = new HashMap();
 connections.addAll(node.getSourceConnections());
 connections.addAll(node.getTargetConnections());
 for (int i = 0; i < connections.size(); i++) {
 Connection connection = (Connection)connections.get(i);
 connectionSources.put(connection,connection.getSource());
 connectionTargets.put(connection,connection.getTarget());
 connection.setSource(null);
 connection.setTarget(null);
 }
 }
 …

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction99

Define NodeDeleteCommand (ctn’d)

public class NodeDeleteCommand extends Command {
 …
 private void reattachConnections() {
 for (int i = 0; i < connections.size(); i++) {
 Connection connection = (Connection)connections.get(i);
 connection.setSource(
 (Node)connectionSources.get(connection));
 connection.setTarget(
 (Node)connectionTargets.get(connection));
 }
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction100

Define NodeComponentEditPolicy

 Override the createDeleteCommand method

public class NodeComponentEditPolicy
extends ComponentEditPolicy {
 protected Command createDeleteCommand(GroupRequest request) {
 NodeDeleteCommand deleteCommand = new NodeDeleteCommand();
 deleteCommand.setGraph(
 (Graph)getHost().getParent().getModel());
 deleteCommand.setNode((Node)getHost().getModel());
 return deleteCommand;
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction101

Install NodeComponentEditPolicy

 Responsibility of NodeEditPart

public class NodeEditPart extends … {
 …
 protected void createEditPolicies() {
 …
 installEditPolicy(
 EditPolicy.COMPONENT_ROLE,
 new NodeComponentEditPolicy());
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction102

Selecting Connections

 Install ConnectionEndpointEditPolicy
 Primary SelectionEditPolicy for showing focus on connections

 All ConnectionEditParts need one

public class ConnectionEditPart
extends AbstractConnectionEditPart {
 …
 protected void createEditPolicies() {
 installEditPolicy(
 EditPolicy.CONNECTION_ENDPOINTS_ROLE,
 new ConnectionEndpointEditPolicy());
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction103

Define ConnectionDeleteCommand
public class ConnectionDeleteCommand extends Command {
 private Node source, target;
 private Connection connection;
 public void setConnection(Connection connection) {
 this.connection = connection;
 }
 public void execute() {
 if (source == null) source = connection.getSource();
 if (target == null) target = connection.getTarget();
 connection.setSource(null);
 connection.setTarget(null);
 }
 public void undo() {
 connection.setSource(source);
 connection.setTarget(target);
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction104

Define ConnectionEditPolicy

 Default model-based EditPolicy for Connections
 Only knows about the model and its basic operations

 Single default operation : DELETE

public class ConnectionEditPolicy
extends org.eclipse.gef.editpolicies.ConnectionEditPolicy {
 protected Command getDeleteCommand(GroupRequest request) {
 ConnectionDeleteCommand result =
 new ConnectionDeleteCommand();
 result.setConnection((Connection)getHost().getModel());
 return result;
 }
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction105

Install ConnectionEditPolicy

public class ConnectionEditPart
extends AbstractConnectionEditPart {
 …
 protected void createEditPolicies() {
 installEditPolicy(
 EditPolicy.CONNECTION_ROLE,
 new ConnectionEditPolicy());
 installEditPolicy(
 EditPolicy.CONNECTION_ENDPOINTS_ROLE,
 new ConnectionEndpointEditPolicy());
 }
 …
}

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction106

Basic Functional Graph Editor

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction107

What’s Next?

 Saving and loading the model
 By serialization or with XML representation

 Provide an outline view
 Support for a grid, zooming, guides, …
 Make actions available through context menu
 Provide an extension point to plug-in custom node types

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction108

Final Thoughts

 Steep and long learning curve
 Starting from scratch is not easy

 No books available

 Starting small is mandatory to fully understand
 Very rich framework

 Lots of predefined functionality

 Do very complex things with almost no code
 Use code and javadocs to find details

 Overwhelming for newbie

© 2008 by Koen Aers; made available under the EPL v1.0Developing an Editor for Directed Graphs – GEF Introduction109

Questions?

