;' JBoss @Drools

@ @ by Red Hat

Applying Complex Event Processing

Edson Tirelli

etirelli@redhat.com
Lead CEP Designer
JBoss, a Division of Red Hat

0)

0)

Brief introduction on CEP and Terminology

Drools Vision

Drools Fusion: Complex Event Processing extensions
o Event Declaration and Semantics

o Event Cloud, Streams and the Session Clock
Temporal Reasoning

Sliding Window Support

o Streams Support

o Memory Management

Questions & Answers

(@)

(@)

)Drools

¢ JBOSS 1o ninology: Event iJDrools

® @ by Red Hat

“An event Is an observable occurrence.”

“An event In the Unified Modeling Language Is a
notable occurrence at a particular point in time.”

“Anything that happens, or iIs contemplated as
happening.”
“An object that represents, encodes or records an

event, generally for the purpose of computer
processing”

¢ JBOSS 1o ninology: Event iJDrools

® @ by Red Hat

For the scope of this presentation:

“An event Is a significant change of
state at a particular point in time ”

:;!3055 Terminology: Complex Event JDrools

“Complex Event , is an abstraction of other events
called its members.”

o Examples:

o The 1929 stock market crash — an abstraction denoting many
thousands of member events, including individual stock trades)

o The 2004 Indonesian Tsunami — an abstraction of many natural
events

o A completed stock purchase -an abstraction of the events in a
transaction to purchase the stock

o A successful on- line shopping cart checkout — an abstraction of
shopping cart events on an on-line website

Source:

:;!3055 Terminology: CEP JDrools

“Complex Event Processing , or CEP, Is primarily
an event processing concept that deals with the
task of processing multiple events with the goal
of identifying the meaningful events within the
event cloud.

CEP employs techniques such as detection of
complex patterns of many events, event
correlation and abstraction , event hierarchies,
and relationships between events such as
causality, membership, and timing, and event-
driven processes.”

-- wikipedia

¢ JBOSS Torminology: CEP iJDrools

® @ by Red Hat

o Examples:
o The Drools Bootcamp impact:
o The Eyjafjallajokull glacier volcano eruption in Iceland
o Followed by the ash cloud drifting southeast over Europe

o Causing air traffic disruption in over 20 European and Asian
countries

o Affecting plans of the Drools Bootcamp in San Diego, CA

o Paul's pickpocket event on Rome’s subway
o Credit card fraud detection

o Logistics Real-Time Awareness solution

o Neonatal ICU: infant vital signs monitoring

¢ JBOSS 1ominology: CEP vs ESP iJDrools

® @ by Red Hat

Complex Event Processing , or CEP, and Event
Stream Processing , or ESP, are two
technologies that were born separate, but
converged.

An oversimplification: In their origins...

Event Stream Processing focused on the ability to
process high volume streams of events.

Complex Event Processing focused on defining,
detecting and processing the relationships among
events.

¢ JBOSS Tominclogy: CEP and ESP iJDrools

® @ by Red Hat

For the scope of this presentation:

“CEP Is used as a common term
meaning both CEP and ESP.”

:;!3055 Terminology: EDA JDrools

“Event Driven Architecture (EDA) is a software architecture
pattern promoting the production, detection, consumption of,
and reaction to events. An event can be defined as "a
significant change Iin state"[1]. For example, when a
consumer purchases a car, the car's state changes from "for
sale" to "sold". A car dealer's system architecture may treat
this state change as an event to be produced, published,
detected and consumed by various applications within the
architecture.”

http://en.wikipedia.org/wiki/Event_Driven_Architecture

. JBOSS EDA vs CEP @DI’OOIS

® @ by Red Hat

CEP is a component of the EDA

r—_—_—_—_—_—_—_—_q

|
[Event Event
| Processing e Event Data |
S f
Rules pecifications
I |
| |
Event Event
Developmentl Event Processing Engine hanagement
Tools I | Tools
I |
. Enterprise |
I Servu:_e Event Transport Information
Invocation . I
| Caching
i
Enterprise Integration Backbone
Enterprise y—.

Applications

ai-
o | D

Integrated Resources

Management Portals

© 2006 Elemental Links, Inc.

Source: http://elementallinks.typepad.com/.shared/image.html?/photos/uncategorized/simple_event_flow.gif

¢ JBOSS Epa s SOA 'JDrools

® @ by Red Hat

o EDA is **not** SOA 2.0
o Complementary architectures
o Metaphor
o Inour body:
o SOA Is used to build our muscles and organs
o EDA Is used to build our sensory system

S JBOSS £pA ys SOA JDrools

. @ by Red Hat

Business Process Chain. EDA s—

(k) (em) (fw)
i S - W L

ifp— YOS 0NU0D PUE PUBLLLLGT

En-l'.'lnuh Hlﬂlnmih Enuliﬂmnth
" f‘ o

Source: http://soa-eda.blogspot.com/2006/11/how-eda-extends-soa-and-why-it-is.html

¢ JBOSS -, hjex Event Processing iJDrools

® @ by Red Hat

o A few characteristics of common CEP scenarios:
o Huge volume of events, but only a few of real interest
o Usually events are immutable
o Usually queries/rules have to run in reactive mode
o Strong temporal relationships between events
o Individual events are usually not important
o The composition and aggregation of events is important

Bm Drools Vision i9Drools

. @ by Red Hat

QDrooIs Guvnor &

Busine ;'3-’.‘;
ntegrat Expert

Platform ,
Fusion¥

Flow v

“A common platform to model and govern the business
of the enterprise.”

A ;!3055 Motivation IDrools

o Business Rules, Event Processing and Business Processes
are all modelled declaratively.

o A business solution usually involves the interaction between
these technologies.

o Inshort:
o Technology overlap
o Business overlap
o Several (good) products on the market:

o Better either at CEP/ESP or Rules Processing or
Business Processes

o The approach: attribute the same importance to the three
complementary business modeling technigues

o’ JBoSS 19Drools

@
@ @ by Red Hat

@Drools _
FUSION¥

® . - *
~ B JBoss Enterprise BRMS Platform v5
.l ® vy reaat JBOSS Enterprise SOA Platform v5*

* Tech preview

e IYBOSS b40ls Fusion: Enables. .. @Dmlf)l']sion

® @ by Red Hat

Event Detection:

From an event cloud or set of streams, select all the
meaningful events, and only them.

[Temporal] Event Correlation:

Ability to correlate events and facts declaring both
temporal and non-temporal constraints between them.

Ability to reason over event aggregation
Event Abstraction:

Ability to compose complex events from atomic events
AND reason over them

e JBOSS s Fusion @Dmlf)l']sion

® @ by Red Hat

o Features:
o Event Semantics as First Class Citizens
o Allow Detection, Correlation and Composition
o Temporal Constraints
o Session Clock
o Stream Processing
o Sliding Windows
o CEP volumes (scalability)
o (Re)Active Rules
o Data Loaders for Input

® @ by Red Hat

import some. package. Voi ceCal |

declare Voi ceCal |
@role (event)
@timestamp (calltime)
@duration (duration)

end

declare St ockTi ck

@role (event)

synbol : String
price : double

end

o JBoss Event Declaration and Semantics

o Event semantics:
o Point-in-time and Interval

o An eventis a fact with a few
special characteristics:

o Usually immutable, but not
enforced

o Strong temporal relationships
o Lifecycle may be managed
o Allow use of sliding windows

o “All events are facts, but not all
facts are events.”

o’
e JBoss i
®ce..... lemporal Reasoning

o Semantics for:
o time: discrete
o events:. point-in-time and interval

o Ability to express temporal relationships:
o Allen’s 13 temporal operators

o James F. Allen defined the 13 possible temporal relations
between two events.

o Eiko Yoneki and Jean Bacon defined a unified semantics
for event correlation over time and space.

s JBoss Temporal Relationships @Drl%)llflsionv

@
@ @ by Red Hat

rule “Shipment not picked up in time”

when
Shipment(. scheduledPickupTime)
not ShipmentPickup(this before)
then

end

s JBoss Temporal Relationships @Di%ol']sion

® @ by Red Hat

rule “Shipment not picked up in time”

when
Shipment(. scheduledPickupTime)
not ShipmentPickup(thi€ before})
then
end

Temporal

Relationship

-c|Drools

e UBOSS Ajlapys 13 Temporal Operators @ Fusionv

® @ by Red Hat

_
A before B . . [——
A meets B ‘—.Q ’_.O—O
A overlaps B .—.;‘
Afinishes B 3 -
Aincludes B .T‘ *—0
A starts B :_' 3:‘
A coincides B : :::

¢ JBOSS Ajlen's 13 Temporal Operators @Drl?asion.

® @ by Red Hat

_ Point-Point Point-Interval Interval-Interval

A after B

A metBy B ‘—“

A overlapedBy B
A finishedBy B
A during B

A finishes B

I‘IIIIIIIIII

[L

e IBOSS 5ome references Qorlozoasion

® @ by Red Hat

o Allen, J. F . An interval-based representation of temporal
knowledge. 1981.

o Allen, J. F . Maintaining knowledge about temporal intervals.
1983

o Yoneki, Eiko and Bacon, Jean . Unifiled Semantics for

Event Correlation Over Time and Space in Hybrid Network
Environments. 2005.

o Bennett, Brandon and Galton, Antony P . A Unifying
Semantics for Time and Events. 2000.

o ' JBoss Simple Example Scenario

. @ by Red Hat

I Stock Broker System

events

- ﬂ |
e __f

Home Broker
User

Stock Trader

¢ IBOSS giream Support (entry -points)

® @ by Red Hat

o A scoping abstraction for stream support

o Rule compiler gather all entry-point declarations and
expose them through the session API

o Engine manages all the scoping and synchronization
behind the scenes.

-] stock.drl &3 = B8

1 package com. sample =

rule "Stock Trade Correlation®
4 when
5 $c: Customer(type == "WVIP")

G BuyOrderEvent(customer == %c, $id : id) from entry-point "Home Broker Stream”
7 BuyAckEvent({ relatedEvent == %id) from entry-point "Stock Trader Stream”

2 then
9 Ff take some action

10 end| StatefulSession session = ...
EntryPoint ep = session.getEntryPoint(“Home Broker Stream”);

ep.insert(...);

(]
Text Editor |Rete Tree || ep.insert(...);

e IBOSS ~|5ud Mode, Stream Mode, Session Clock

® @ by Red Hat

CLOUD

STREAM

No notion of “flow of time™:
the engine sees all facts
without regard to time

No attached Session Clock

NoO requirements on event
ordering

No automatic event lifecycle
management

No sliding window support

Notion of “flow of time™:
concept of “now”

Session Clock has an active
role synchronizing the
reasoning

Event Streams must be
ordered

Automatic event lifecycle
management

Sliding window support

Automatic rule delaying on
absence of facts

e JBOSS pafarence Clock @Drl%)asion.

® @ by Red Hat

o Reference clock defines the flow of time

o Named Session Clock
o IS assigned to each session created
o Synchronizes time sensitive operations
o duration rules
o event streams
o process timers
o sliding windows

e YBOSS 5a5sion Clock @Drlozoasion.

® @ by Red Hat

o Uses the strategy pattern and multiple implementations:
o Real-time operation

o Tests
o Simulations
o etc
1
4 N
SessionClock
_\ J
|
[| |]
4] N\ 4] N A l'\l A l-l
RealTimeClock PseudoClock HeartBeatClock | | ! (custom clocks) !
S “\ﬁ \7i i ‘\7i i

__

e YBOSS 5a5sion Clock @Drl%ﬁsiom

® @ by Red Hat

Selecting the session clock:

API:
KnowledgeSessionConfiguration conf = ...
conf.setOption(ClockTypeOption.get (“realtime”));

System Property or Configuration File:

drools.clockType = pseudo

 JBoss Sliding Window Support @Drl%ﬁsion.

® @ by Red Hat

o Allows reasoning over a moving window of “interest”
o Time
o Length

rule “Average Order Value over 12 hours”
when
$c : Customer()
$a : Number() from accumulate (
BuyOrder(customer == $c, $p : price) over window:time(12h),
average($p))
then
// do something
end

¢ JBoss Delaying Rules @Drl%ﬁsion.

® @ by Red Hat

o Negative patterns may require rule firings to be delayed.

rule “Order timeout”

when
. BuyShares (2 1d)
not BuySharesAck(id == Sid, this after[0s,30s])
then

end

¢ JBOSS nolaving Rules @Dmlf)asion

® @ by Red Hat

o Negative patterns may require rule firings to be delayed.

rule “Order timeout”

when

________ .BuysShares (&0 id)
' not BuySharesAck(id == ©id, this after[0s,30s])
then A

end

Forces the rule to wait for 30 seconds before firing, because the

acknowledgement may arrive at any time!

i.-- -(|Drools
e JBOSS gome references @DFusionu

® @ by Red Hat

v Ghanem, Hammad, Mokbel, Aref and EImagarmid .
Incremental Evaluation of Sliding-Window Queries over
Data Streams.

¢ JBOSS Tomnoral Dimension @Drlozoasion.

® @ by Red Hat

o Requires the support to the temporal dimension

o A rule/query might match in a given point in time, and not
match in the subsequent point in time

o That s the single most difficult requirement to support in a
way that the engine:

o Stays deterministic
o Stays a high-performance engine
o Achieved mostly by compile time optimizations that enable:
o constraint tightening
o Mmatch space narrowing
o Mmemory management

=- ° B'

® @ by Red Hat

Temporal Dimension Support @Drﬁoasion.

o CEP scenarios are stateful by nature.

o Events usually are only interesting during a short period of
time.

o Hard for applications to know when events are not
necessary anymore

o Temporal constraints and sliding windows describe such
*window of interest”

¢ JBOSS 556 Example Rule @Drl%ﬁsion.

® @ by Red Hat

rule “Bag was not lost”
when
$c : BagEvent() from entry-point “check-in”
$l : BagEvent(this == $c.bagld, this after[0,5m] $c)
from entry-point “pre-load”
then
/[bag was not lost
end

e IBOSS Apsiract Example Rule @Drl%ﬁsion.

® @ by Red Hat

rule “reasoning on events over time”
when
$a:A()
$b : B(this after[-2,2] $a)
$c : C(this after[-3,4] $a)
$d : D(this after[1,2] $b, this after[2,3] $c)
not E(this after[1,10] $d)
then
// do something
end

¢ JBOSS Temporal Distance Algorithm @Dmlf)l'fjsion

® @ by Red Hat

1. Gather all temporal relationships between events

2. Create the temporal dependency graph as a dependency
matrix

3. Calculate the reflexive and transitive closures
o Floyd-Warshall algorithm: O(n3)

4. Check for unbound intervals
e Infinite time-windows

5. Calculate the maximum expiration time for each of the
event types

6. Calculate necessary delay for the rules with negative
patterns

=- ° B'

® @ by Red Hat

['2!2]

Temporal Dependency Matrix

@Drools)
Fusiony

[1,2]
[2,3]
[0,0]
[-10, -1]

[1,10]
[0, 0]

¢ JBoss Temporal Dependency Matrix @Drlozoasion.

® @ by Red Hat

A B CcC D ___E_

A [0,0] [-2,2] [-3,4] [-0, =] [-e0,]
B [-2,2] [0,0] [-0, =] [1,2] [-0, =]
C [-4,3] [-e0,] [0,0] [2,3] [-e0,]
D [-0,] [-2,-1] [-3,-2] [0,0] [1,10]
E [-0, =] [-0, =] [-0,] [-10,-1] [0,0]
'\} Transitive Closure
I S N - R
A [0,0] [-2,2] [-3, 2] [-1,4] [0, 14]
B [-2, 2] [0,0] [-2,0] [1, 2] [2,12]
C [-2,3] [0, 2] [0,0] [2,3] [3, 13]
D [-4,1] [-2,-1] [-3,-2] [0,0] [1, 10]
E [-14,0] [-12, -2] [-13, -3] [-10,-1] [0,0]

Drools

s JBoss Temporal Dependency Matrix @ Fusiony

® @ by Red Hat

A [0,0] [-2,2] '[-3,2]1 [-1,4] [0, 14]
B [-2,2] (0,0] [-20] [1,2] [2,12]
C [-2,3] [0,2] [0,0] [2,3] [3,13]
D [-4,1] [-2,-1] [-3,-2] [0,0] [1,10]
E [-14,0] [-12,-2] [-13,-3] [-10,-1] [0,0]

e ¥BOSS 56 references @Drl?asion.

® @ by Red Hat

o Teodosiu, Dan and Pollak , Gunter . Discarding Unused
Temporal Information in a Production System.

o ‘2 | -
s JBoss (g 15)Drools

Drools project site:
http://www.drools.org (http://www.jboss.org/drools/)

Documentation:
http://www.jboss.org/drools/documentation.html

Edson Tlre”' Drools JBoss Rules 5.0 JBoss Drools Business Rules

etire”i@redhat_com Developer's Guide

Lead CEP Designer
JBoss, a Division of Red Hat

