
Applying Complex Event ProcessingApplying Complex Event Processing

Edson Tirelli
etirelli@redhat.com

Lead CEP Designer
JBoss, a Division of Red Hat

Agenda

o Brief introduction on CEP and Terminology

o Drools Vision
o Drools Fusion: Complex Event Processing extensions

o Event Declaration and Semantics
o Event Cloud, Streams and the Session Clock
o Temporal Reasoning
o Sliding Window Support
o Streams Support
o Memory Management

o Questions & Answers

Brief introduction on CEP and Terminology

Drools Fusion: Complex Event Processing extensions
Event Declaration and Semantics
Event Cloud, Streams and the Session Clock

“An event is an observable occurrence
“An event in the Unified Modeling Language is a

notable occurrence at a particular

Terminology: Event

“Anything that happens,
happening.”

“An object that represents,
event, generally for the
processing”

http://complexevents.com

observable occurrence.”
“An event in the Unified Modeling Language is a

at a particular point in time.”
http://www.wikipedia.org

Terminology: Event

, or is contemplated as

represents, encodes or records an
the purpose of computer

http://complexevents.com

For the scope of this presentation:

“An event is a significant

Terminology: Event

“An event is a significant
state at a particular

For the scope of this presentation:

significant change of

Terminology: Event

significant change of
at a particular point in time ”

“Complex Event , is an abstraction of other events
called its members.”

o Examples:
o The 1929 stock market crash –

thousands of member events, including individual stock trades)

Terminology: Complex Event

thousands of member events, including individual stock trades)

o The 2004 Indonesian Tsunami –
events

o A completed stock purchase -an abstraction of the events in a
transaction to purchase the stock

o A successful on- line shopping cart checkout
shopping cart events on an on-line website

� Source: http://complexevents.com

, is an abstraction of other events

an abstraction denoting many
member events, including individual stock trades)

Terminology: Complex Event

member events, including individual stock trades)

– an abstraction of many natural

an abstraction of the events in a

line shopping cart checkout – an abstraction of
line website

http://complexevents.com

“Complex Event Processing
an event processing concept that deals with the
task of processing multiple events with the goal
of identifying the meaningful events
event cloud.

Terminology: CEP

CEP employs techniques such as
complex patterns of many events, event
correlation and abstraction
and relationships between events such as
causality, membership, and timing, and event
driven processes.”

Complex Event Processing , or CEP, is primarily
an event processing concept that deals with the
task of processing multiple events with the goal

identifying the meaningful events within the

Terminology: CEP

employs techniques such as detection of
complex patterns of many events, event

abstraction , event hierarchies,
and relationships between events such as
causality, membership, and timing, and event-

-- wikipedia

o Examples:
o The Drools Bootcamp impact:

o The Eyjafjallajokull glacier volcano eruption in Iceland
o Followed by the ash cloud drifting southeast over Europe
o Causing air traffic disruption in over 20 European and Asian

countries

Terminology: CEP

o Affecting plans of the Drools Bootcamp

o Paul’s pickpocket event on Rome’s subway

o Credit card fraud detection

o Logistics Real-Time Awareness solution

o Neonatal ICU: infant vital signs monitoring

glacier volcano eruption in Iceland
Followed by the ash cloud drifting southeast over Europe
Causing air traffic disruption in over 20 European and Asian

CEP

Bootcamp in San Diego, CA

Paul’s pickpocket event on Rome’s subway

Time Awareness solution

Neonatal ICU: infant vital signs monitoring

Complex Event Processing
Stream Processing , or ESP, are two
technologies that were born separate, but
converged.

Terminology: CEP

� An oversimplification: In their origins...
� Event Stream Processing focused on the ability to

process high volume streams
� Complex Event Processing

detecting and processing the
events.

Complex Event Processing , or CEP, and Event
, or ESP, are two

technologies that were born separate, but

Terminology: CEP vs ESP

: In their origins...
focused on the ability to

streams of events.
Complex Event Processing focused on defining,
detecting and processing the relationships among

For the scope of this presentation:

“CEP is used as a common term

Terminology: CEP and ESP

“CEP is used as a common term
meaning both CEP and ESP

For the scope of this presentation:

is used as a common term

Terminology: CEP and ESP

is used as a common term
meaning both CEP and ESP.”

“Event Driven Architecture (EDA)
pattern promoting the production
and reaction to events. An event
significant change in state"[1]. For example, when a
consumer purchases a car, the car's state changes from "for
sale" to "sold". A car dealer's system architecture may treat
this state change as an event to be produced, published,

Terminology: EDA

this state change as an event to be produced, published,
detected and consumed by various applications within the
architecture.”

http://en.wikipedia.org/wiki/Event_Driven_Architecture

Event Driven Architecture (EDA) is a software architecture
production, detection, consumption of,

event can be defined as "a
significant change in state"[1]. For example, when a
consumer purchases a car, the car's state changes from "for
sale" to "sold". A car dealer's system architecture may treat
this state change as an event to be produced, published,

Terminology: EDA

this state change as an event to be produced, published,
detected and consumed by various applications within the

http://en.wikipedia.org/wiki/Event_Driven_Architecture

EDA vs CEP

CEP is a component

Source: http://elementallinks.typepad.com/.shared/image.html?/photos/uncategorized/simple_event_flow.gif

component of the EDA

Source: http://elementallinks.typepad.com/.shared/image.html?/photos/uncategorized/simple_event_flow.gif

EDA vs SOA

o EDA is **not** SOA 2.0

o Complementary architectures
o Metaphor

o In our body:
o SOA is used to build our
o EDA is used to build our

SOA is used to build our muscles and organs
EDA is used to build our sensory system

EDA vs SOA

Source: http://soa-eda.blogspot.com/2006/11/howeda.blogspot.com/2006/11/how-eda-extends-soa-and-why-it-is.html

Complex Event Processing

o A few characteristics of common CEP scenarios:
o Huge volume of events, but only a
o Usually events are immutable
o Usually queries/rules have to run in
o Strong temporal relationships
o Individual events are usually
o The composition and aggregation

Complex Event Processing

A few characteristics of common CEP scenarios:
of events, but only a few of real interest

immutable
Usually queries/rules have to run in reactive mode

temporal relationships between events
events are usually not important

aggregation of events is important

Drools Vision

“A common platform to model
logic of the enterprise.”

model and govern the business
of the enterprise.”

Motivation

o Business Rules, Event Processing and Business Processes
are all modelled declaratively.

o A business solution usually involves the
these technologies.

o In short:
Technology overlapo Technology overlap

o Business overlap

o Several (good) products on the market:
o Better either at CEP/ESP or

Business Processes
o The approach: attribute the same importance

complementary business modeling techniques

Business Rules, Event Processing and Business Processes

A business solution usually involves the interaction between

Several (good) products on the market:
or Rules Processing or

attribute the same importance to the three
complementary business modeling techniques

Drools Fusion: Enables…

• Event Detection:
• From an event cloud or set of streams, select all the

meaningful events, and only them.

• [Temporal] Event Correlation:
• Ability to correlate events and facts declaring both

temporal and non-temporal constraints between them.temporal and non-temporal constraints between them.
• Ability to reason over event aggregation

• Event Abstraction:
• Ability to compose complex events from atomic events

AND reason over them

Drools Fusion: Enables…

From an event cloud or set of streams, select all the
meaningful events, and only them.

[Temporal] Event Correlation:
Ability to correlate events and facts declaring both

temporal constraints between them.temporal constraints between them.
Ability to reason over event aggregation

Ability to compose complex events from atomic events

Drools Fusion

o Features:
o Event Semantics as First Class Citizens
o Allow Detection, Correlation and Composition
o Temporal Constraints
o Session Clock
o Stream Processing
o Sliding Windows
o CEP volumes (scalability)
o (Re)Active Rules
o Data Loaders for Input

Event Semantics as First Class Citizens
Allow Detection, Correlation and Composition

Event Declaration and Semantics

o Event
o Point

o An event
special characteristics:

Usually

// declaring existing class

import some.package.VoiceCall

declare VoiceCall

@role (event)

@timestamp (calltime)

@duration (duration)

end

o Usually
enforced

o Strong
o Lifecycle
o Allow use of

o “All events
facts are events.”

// generating an event class

declare StockTick

@role (event)

symbol : String

price : double

end

Event Declaration and Semantics

Event semantics:
Point-in-time and Interval

event is a fact with a few
special characteristics:

Usually immutable, but not Usually immutable, but not
enforced
Strong temporal relationships
Lifecycle may be managed
Allow use of sliding windows

events are facts, but not all
facts are events.”

Temporal Reasoning

o Semantics for:
o time: discrete
o events: point-in-time and interval

o Ability to express temporal relationships:
o Allen’s 13 temporal operators

o James F. Allen defined the 13 possible temporal relations
between two events.

o Eiko Yoneki and Jean Bacon
for event correlation over time and space.

Temporal Reasoning

interval

Ability to express temporal relationships:
Allen’s 13 temporal operators

defined the 13 possible temporal relations

defined a unified semantics
for event correlation over time and space.

Temporal Relationships

rule “Shipment not picked up in time”

when

Shipment($pickupTime : scheduledPickupTime

not ShipmentPickup(this before

then

rule “Shipment not picked up in time”

when

Shipment($pickupTime : scheduledPickupTime

not ShipmentPickup(this before

thenthen

// shipment not picked up... action required.

end

then

// shipment not picked up... action required.

end

Temporal Relationships

“Shipment not picked up in time”

scheduledPickupTime)

before $pickupTime)

“Shipment not picked up in time”

scheduledPickupTime)

before $pickupTime)

// shipment not picked up... action required.// shipment not picked up... action required.

Temporal Relationships

rule “Shipment not picked up in time”

when

Shipment($pickupTime : scheduledPickupTime

not ShipmentPickup(this before

then

rule “Shipment not picked up in time”

when

Shipment($pickupTime : scheduledPickupTime

not ShipmentPickup(this before

thenthen

// shipment not picked up... Action required.

end

then

// shipment not picked up... Action required.

end

Temporal Relationships

“Shipment not picked up in time”

scheduledPickupTime)

before $pickupTime)

“Shipment not picked up in time”

scheduledPickupTime)

before $pickupTime)

// shipment not picked up... Action required.// shipment not picked up... Action required.

Temporal
Relationship

Allen’s 13 Temporal Operators

Point-Point

A before B

A meets B

A overlaps B

A
B

A
B

A
A overlaps B

A finishes B

A includes B

A starts B

A coincides B

A
B

A
B

A
B

A
B

A
B

Allen’s 13 Temporal Operators

Point-Interval Interval-Interval

Allen’s 13 Temporal Operators

Point-Point

A after B

A metBy B

A overlapedBy B

A
B

A
B

A
A overlapedBy B

A finishedBy B

A during B

A finishes B

A
B

A
B

A
B

A
B

Allen’s 13 Temporal Operators

Point-Interval Interval-Interval

Some references

o Allen, J. F . An interval-based representation of temporal
knowledge. 1981.

o Allen, J. F . Maintaining knowledge about temporal intervals
1983

o Yoneki, Eiko and Bacon, Jean
Event Correlation Over Time and Space in Hybrid Network Event Correlation Over Time and Space in Hybrid Network
Environments. 2005.

o Bennett, Brandon and Galton, Antony P
Semantics for Time and Events

based representation of temporal

Maintaining knowledge about temporal intervals.

and Bacon, Jean . Unified Semantics for
Event Correlation Over Time and Space in Hybrid Network Event Correlation Over Time and Space in Hybrid Network

Bennett, Brandon and Galton, Antony P . A Unifying
Semantics for Time and Events. 2000.

Simple Example ScenarioSimple Example Scenario

Stream Support (entry

o A scoping abstraction for stream support
o Rule compiler gather all entry

expose them through the session API
o Engine manages all the scoping and synchronization

behind the scenes.

StatefulSession session = …

EntryPoint ep = session.getEntryPoint(“Home Broker Stream”);

…

ep.insert(…);

ep.insert(…);

…

Stream Support (entry -points)

A scoping abstraction for stream support
Rule compiler gather all entry-point declarations and
expose them through the session API
Engine manages all the scoping and synchronization

= session.getEntryPoint(“Home Broker Stream”);

Cloud Mode, Stream

CLOUD

• No notion of “flow of time”:
the engine sees all facts
without regard to time

• No attached Session Clock• No attached Session Clock

• No requirements on event
ordering

• No automatic event lifecycle
management

• No sliding window support

Stream Mode, Session Clock

STREAM

• Notion of “flow of time”:
concept of “now”

• Session Clock has an active
role synchronizing the role synchronizing the
reasoning

• Event Streams must be
ordered

• Automatic event lifecycle
management

• Sliding window support

• Automatic rule delaying on
absence of facts

Reference Clock

o Reference clock defines the flow of time

o Named Session Clock
o is assigned to each session created

o Synchronizes time sensitive operations
o duration rules
o event streams
o process timers
o sliding windows

Reference clock defines the flow of time

is assigned to each session created

Synchronizes time sensitive operations

Session Clock

o Uses the strategy pattern and multiple implementations:

o Real-time operation
o Tests

o Simulations

o etc

SessionClockSessionClock

RealTimeClockRealTimeClock PseudoClockPseudoClock

Uses the strategy pattern and multiple implementations:

SessionClockSessionClock

HeartBeatClockHeartBeatClock (custom clocks)(custom clocks)

Session Clock

o Selecting the session clock:
o API:

KnowledgeSessionConfiguration

conf.setOption(ClockTypeOption.get

o System Property or Configuration File:

drools.clockType = pseudo

KnowledgeSessionConfiguration conf = ...

ClockTypeOption.get (“realtime”));

System Property or Configuration File:

Sliding Window Support

o Allows reasoning over a moving window of “interest”
o Time
o Length

rule “Average Order Value over 12 hours”
when
rule “Average Order Value over 12 hours”
whenwhen

$c : Customer()
$a : Number() from accumulate (

BuyOrder(customer == $c, $p :
average($p))

then
// do something

end

when
$c : Customer()
$a : Number() from accumulate (

BuyOrder(customer == $c, $p :
average($p))

then
// do something

end

Sliding Window Support

Allows reasoning over a moving window of “interest”

“Average Order Value over 12 hours”“Average Order Value over 12 hours”

== $c, $p : price) over window:time(12h),== $c, $p : price) over window:time(12h),

Delaying Rules

o Negative patterns may require rule firings to be delayed.

rule “Order timeout”

when

$bse : BuyShares ($id : id)

rule “Order timeout”

when

$bse : BuyShares ($id : id)

not BuySharesAck(id == $id, this

then

// Buy order was not acknowledged. Cancel operation

// by timeout.

end

not BuySharesAck(id == $id, this

then

// Buy order was not acknowledged. Cancel operation

// by timeout.

end

patterns may require rule firings to be delayed.

this after[0s,30s] $bse)

// Buy order was not acknowledged. Cancel operation

this after[0s,30s] $bse)

// Buy order was not acknowledged. Cancel operation

Delaying Rules

o Negative patterns may require rule firings to be delayed.

rule “Order timeout”

when

$bse : BuyShares ($id : id)

rule “Order timeout”

when

$bse : BuyShares ($id : id)

not BuySharesAck(id == $id, this

then

// Buy order was not acknowledged. Cancel operation

// by timeout.

end

not BuySharesAck(id == $id, this

then

// Buy order was not acknowledged. Cancel operation

// by timeout.

end

Forces the rule to wait for 30 seconds before firing, because the
acknowledgement may arrive at any time!

patterns may require rule firings to be delayed.

this after[0s,30s] $bse)

// Buy order was not acknowledged. Cancel operation

this after[0s,30s] $bse)

// Buy order was not acknowledged. Cancel operation

Forces the rule to wait for 30 seconds before firing, because the
acknowledgement may arrive at any time!

Some references

� Ghanem, Hammad, Mokbel, Aref
Incremental Evaluation of Sliding
Data Streams.

Aref and Elmagarmid .
Incremental Evaluation of Sliding-Window Queries over

Temporal Dimension

o Requires the support to the temporal dimension
o A rule/query might match in a given point in time, and not

match in the subsequent point in time

o That is the single most difficult requirement to support in a
way that the engine:way that the engine:
o stays deterministic
o stays a high-performance engine

o Achieved mostly by compile time optimizations that enable:
o constraint tightening
o match space narrowing
o memory management

Temporal Dimension

Requires the support to the temporal dimension
A rule/query might match in a given point in time, and not
match in the subsequent point in time

That is the single most difficult requirement to support in a

performance engine

Achieved mostly by compile time optimizations that enable:

Temporal Dimension Support

o CEP scenarios are stateful by nature.

o Events usually are only interesting during a short period of
time.

o Hard for applications to know when events are not
necessary anymore
o Temporal constraints and sliding windows describe such o Temporal constraints and sliding windows describe such

“window of interest”

Temporal Dimension Support

by nature.

interesting during a short period of

Hard for applications to know when events are not

Temporal constraints and sliding windows describe such Temporal constraints and sliding windows describe such

Simple Example Rule

rule “Bag was not lost”
when

$c : BagEvent() from entry-point “check$c : BagEvent() from entry-point “check
$l : BagEvent(this == $c.bagId

from entry-point “pre
then

// bag was not lost
end

Simple Example Rule

point “check-in”point “check-in”
c.bagId, this after[0,5m] $c)

point “pre-load”

Abstract Example Rule

rule “reasoning on events over time”
when

$a : A()
$b : B(this after[-2,2] $a)$b : B(this after[-2,2] $a)
$c : C(this after[-3,4] $a)
$d : D(this after[1,2] $b, this after[2,3]
not E(this after[1,10] $d)

then
// do something

end

Abstract Example Rule

“reasoning on events over time”

after[2,3] $c)

Temporal Distance Algorithm

1. Gather all temporal relationships between events

2. Create the temporal dependency graph as a dependency
matrix

3. Calculate the reflexive and transitive closures
� Floyd-Warshall algorithm: O(n

Check for unbound intervals4. Check for unbound intervals
� Infinite time-windows

5. Calculate the maximum expiration time for each of the
event types

6. Calculate necessary delay for the rules with negative
patterns

Temporal Distance Algorithm

Gather all temporal relationships between events

Create the temporal dependency graph as a dependency

Calculate the reflexive and transitive closures
algorithm: O(n3)

Calculate the maximum expiration time for each of the

Calculate necessary delay for the rules with negative

Temporal Dependency Matrix

A D

C

B[-2,2]

[-3,4] [2,3]

[1,2]

A B C

A [0, 0] [-2, 2] [-

B [-2, 2] [0, 0] [-

C [-4, 3] [-∞, ∞] [0, 0]

D [-∞, ∞] [-2, -1] [-

E [-∞, ∞] [-∞, ∞] [-

Temporal Dependency Matrix

D E
[1,10]

C D E

-3, 4] [-∞, ∞] [-∞, ∞]

-∞, ∞] [1, 2] [-∞, ∞]

[0, 0] [2, 3] [-∞, ∞]

-3, -2] [0, 0] [1, 10]

-∞, ∞] [-10, -1] [0, 0]

Temporal Dependency Matrix

A B C

A [0, 0] [-2, 2] [-

B [-2, 2] [0, 0] [-

C [-4, 3] [-∞, ∞] [0, 0]

D [-∞, ∞] [-2, -1] [-

E [-∞, ∞] [-∞, ∞] [-

A B C

A [0, 0] [-2, 2] [-

B [-2, 2] [0, 0] [-

C [-2, 3] [0, 2] [0, 0]

D [-4, 1] [-2, -1] [-

E [-14, 0] [-12, -2] [-

Temporal Dependency Matrix

C D E

-3, 4] [-∞, ∞] [-∞, ∞]

-∞, ∞] [1, 2] [-∞, ∞]

[0, 0] [2, 3] [-∞, ∞]

-3, -2] [0, 0] [1, 10]

-∞, ∞] [-10, -1] [0, 0]

C D E

-3, 2] [-1, 4] [0, 14]

-2, 0] [1, 2] [2, 12]

[0, 0] [2, 3] [3, 13]

-3, -2] [0, 0] [1, 10]

-13, -3] [-10,-1] [0, 0]

Transitive Closure

Temporal Dependency Matrix

A D

B[-2,2]

[-3,4] [2,3]

[1,2]

C

A B C

A [0, 0] [-2, 2] [-

B [-2, 2] [0, 0] [-

C [-2, 3] [0, 2] [0, 0]

D [-4, 1] [-2, -1] [-

E [-14, 0] [-12, -2] [-

Temporal Dependency Matrix

D E
[1,10]

C D E

-3, 2] [-1, 4] [0, 14]

-2, 0] [1, 2] [2, 12]

[0, 0] [2, 3] [3, 13]

-3, -2] [0, 0] [1, 10]

-13, -3] [-10,-1] [0, 0]

Some references

o Teodosiu, Dan and Pollak , Günter
Temporal Information in a Production System

, Günter . Discarding Unused
Temporal Information in a Production System.

Q&A

o Drools project site:
o http://www.drools.org (http://www.jboss.org/drools/)

o Documentation:
o http://www.jboss.org/drools/documentation.html

Edson Tirelli
etirelli@redhat.com
Lead CEP Designer
JBoss, a Division of Red Hat

http://www.drools.org (http://www.jboss.org/drools/)

http://www.jboss.org/drools/documentation.html

