
Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Combining Rules and Semantics in Drools
A Preliminary Study

Davide Sottara [dsotty@gmail.com]

aDepartment of Computer Science, Electronics and Systems
Faculty of Engineering, University of Bologna

Viale Risorgimento 2, 40100 Bologna (BO) Italy

Bologna/San Diego - April 19-23th, 2010

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Outline

1 Introduction
Motivations
Modelling Knowledge

2 Integrated “Semantic Reasoning”
RDF
RDFS
Towards Description Logics

OWL-like Axioms
OWL-like Constructors

3 Embedding Semantics in Rules

4 Conclusions

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Ontologies

Ontology : A formal specification of the terms in a domain

Capture knowledge about some domain of interest

Describe the concepts in the domain

State the relationships that hold between them

List the individuals and their features

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Motivations

Outline

1 Introduction
Motivations
Modelling Knowledge

2 Integrated “Semantic Reasoning”
RDF
RDFS
Towards Description Logics

OWL-like Axioms
OWL-like Constructors

3 Embedding Semantics in Rules

4 Conclusions

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Motivations

Semantic Descriptions: Motivations

To share common understanding of the structure of
information among people or software agents

To enable reuse of domain knowledge

To separate domain knowledge from operational knowledge

To analyse domain knowledge

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Motivations

Semantic Reasoning: Motivations

Objects naturally fall into categories, possibly more than one...

Categories (simple or complex) can be more general or specific
than others...

Objects have parts and relationships among them...

So we would like...

to define generalization relations

to automatically infer generalization hierarchies from the
provided descriptions

to represent complex concepts by “composition” of simpler
concepts

to know if an individual belongs to some category or not

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Motivations

Semantic Reasoning: Motivations

Objects naturally fall into categories, possibly more than one...

Categories (simple or complex) can be more general or specific
than others...

Objects have parts and relationships among them...

So we would like...

to define generalization relations

to automatically infer generalization hierarchies from the
provided descriptions

to represent complex concepts by “composition” of simpler
concepts

to know if an individual belongs to some category or not

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Motivations

Semantic Rule-Based Reasoning : Motivations

Descriptions still have some limitations

Capturing complex relations between properties
Capturing comples relations between individuals

Adding Operative behaviour

we know that an individual belongs to some class: now what?

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Modelling Knowledge

Outline

1 Introduction
Motivations
Modelling Knowledge

2 Integrated “Semantic Reasoning”
RDF
RDFS
Towards Description Logics

OWL-like Axioms
OWL-like Constructors

3 Embedding Semantics in Rules

4 Conclusions

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Modelling Knowledge

Formalisms

Many languages in different contexts, including:

Semantic Web

Relational

RDF
RDF-S

(Description) Logic-Based

OWL (Lite, DL, Full)

Rule Integrations

SWRL

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Modelling Knowledge

Challenges

Languages need Reasoners to be useful

Complete
Correct
Efficient
Efficacious

Drools and Semantics

Where does Drools stand?

No support for ”semantics” yet

Some (relevant) limitations

What we want :

Homogeneous Integration? (tightly coupled)

Hybrid is also possible (loosely coupled)

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Modelling Knowledge

Challenges

Languages need Reasoners to be useful

Complete
Correct
Efficient
Efficacious

Drools and Semantics

Where does Drools stand?

No support for ”semantics” yet

Some (relevant) limitations

What we want :

Homogeneous Integration? (tightly coupled)

Hybrid is also possible (loosely coupled)

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Modelling Knowledge

Tight vs Loose Coupling

Hybrid

Separated Rule and
Semantic Engines

Different languages with
common points

Rule Engine delegates the
evaluation

Homogeneous

Single Rule/Semantic
Engine

Unique language with
sufficient expressiveness

Engine supports both types
of reasoning

Hybrid : Drools Example

Custom Evaluator wrapper

Person(this isA Patient.class)

Homogeneous : Drools Example

Native evaluation

later...

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Modelling Knowledge

Tight vs Loose Coupling

Hybrid

Separated Rule and
Semantic Engines

Different languages with
common points

Rule Engine delegates the
evaluation

Homogeneous

Single Rule/Semantic
Engine

Unique language with
sufficient expressiveness

Engine supports both types
of reasoning

+ “Full” Expressiveness

+ Efficiency

− Interfacing

− KB alignment

+ Single component

+ Unified model

− Limited expressiveness ??

− Efficiency ??

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Modelling Knowledge

Tight vs Loose Coupling

Hybrid

Use the Wrapper Pattern (see my
other talk...)

Homogeneous

Many Potentialities

Currently many Open Issues
!!

We’ll see what can be
(easily) done...

And what can’t be done
(yet?)

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Modelling Knowledge

Tight vs Loose Coupling

Hybrid

Use the Wrapper Pattern (see my
other talk...)

Homogeneous

Many Potentialities

Currently many Open Issues
!!

We’ll see what can be
(easily) done...

And what can’t be done
(yet?)

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Modelling Knowledge

Tight vs Loose Coupling

Hybrid

Use the Wrapper Pattern (see my
other talk...)

Homogeneous

Many Potentialities

Currently many Open Issues
!!

We’ll see what can be
(easily) done...

And what can’t be done
(yet?)

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

RDF

Outline

1 Introduction
Motivations
Modelling Knowledge

2 Integrated “Semantic Reasoning”
RDF
RDFS
Towards Description Logics

OWL-like Axioms
OWL-like Constructors

3 Embedding Semantics in Rules

4 Conclusions

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

RDF

RDF

Knowledge is encoded using “triples”

P(S,O)

reads (e.g.) “S has property P with respect to O”

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

RDF

RDF

Also graphical notation

RDF Triplesa

aProlog-like, namespaces omitted

type(sanGiovanni,pediatricHospital)

hasPatient(sanGiovanni,p)

hasName(p,“mario”)

type(p,child)

sanGiovanni

pediatricHospital
type

p
hasPatient

“mario”
hasName

child
type

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

RDF

RDF vs Drools

Mapping triples on (dynamic) beans

generics?

automatic translation?

dec lare P r o p e r t y
@role (p r o p e r t y)
@namespace (. . .)

s u b j e c t : R es o u r c e // Object
o b j e c t : R e s o u r c e // Object

end

dec lare P r o p e r t y V a l u e
pred : C l a s s <? e x t e n d s P ro per ty >
s u b j e c t : R es o u r c e
o b j e c t : R e s o u r c e

end

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

RDF

RDF vs Drools

Equivalent representation:

r u l e "Triple 2 PropVal"
when

$t : P r o p e r t y ($s : s u b j e c t , $o : o b j e c t)
then

i n s e r t (new P r o p e r t y V a l u e ($t . c l a s s , $s , $o)) ;
end

ru l e "PropVal 2 Triple"
when

P r o p e r t y V a l u e ($p : pred , $s : s u b j e c t , $o : o b j e c t)
then

i n s e r t ($p . n e w I n s t a n c e ($s , $o)) ;
end

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

RDF

RDF

Triples could be used in rules explicitly, possibly mixed with
“usual” beans

r u l e "Visiting Parents"
when

$c : Person () HasName ($c , "mario")
$h : H o s p i t a l () HasType ($h , P e d i a t r i c H o s p i t a l . c l a s s)
$p : Person () H a s Ch i l d ($p , $c)
$r : H a s P a t i e n t ($h , $p)

then
i n s e r t (new V i s i t s ($p , $h)) ;

end

But this is just the beginning...

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

RDFS

Outline

1 Introduction
Motivations
Modelling Knowledge

2 Integrated “Semantic Reasoning”
RDF
RDFS
Towards Description Logics

OWL-like Axioms
OWL-like Constructors

3 Embedding Semantics in Rules

4 Conclusions

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

RDFS

RDF Schema

RDF-S

Adds Schema information

Entity/Class Relations

Class/Class Relations

Reason over and with types

Overcomes the extends/instanceof limitations

Even in Drools:

// s t a t i c t y p e
when P a t i e n t (. . .)

// dynamic t y p e
when $p : Person ()

Type ($r , P a t i e n t . c l a s s)

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

RDFS

RDF Schema

RDF-S

Adds Schema information

Entity/Class Relations

Class/Class Relations

Reason over and with types

Overcomes the extends/instanceof limitations

Even in Drools:

// s t a t i c t y p e
when P a t i e n t (. . .)

// dynamic t y p e
when $p : Person ()

Type ($r , P a t i e n t . c l a s s)

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

RDFS

RDF Schema

RDF-S

Adds Schema information

Entity/Class Relations

Class/Class Relations

Reason over and with types

Overcomes the extends/instanceof limitations

Even in Drools:

// s t a t i c t y p e
when P a t i e n t (. . .)

// dynamic t y p e
when $p : Person ()

Type ($r , P a t i e n t . c l a s s)

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

RDFS

RDF Schema - Axioms

Provided a few relations are defined:

Schema Relations

Type Resource × Class
Subject Property × Resource
Object Property × Resource

Predicate Property × Class
Value Resource × Resource

Domain ClassProperty × Class
Range ClassProperty × Class

SubClassOf Class × Class
SubPropertyOf ClassProperty × ClassProperty

... ...

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

RDFS

RDF Schema - Axioms

r u l e "DomainRange"
when

$prop : SomeProperty ($sub j , $ o b j)
Domain ($prop . c l a s s , $dom)
Range ($prop . c l a s s , $ range)

then
// from $prop d e f i n i t i o n :
i n s e r t (new Type ($sub j , $dom)) ;
i n s e r t (new Type ($obj , $ range)) ;

end

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

RDFS

RDF Schema - Axioms

r u l e "SubClassOf"
when

Type ($x , $ k l a s s)
SubClassOf ($ k l a s s , $ s u p e r)

then
i n s e r t (new Type ($x , $ s u p e r)) ;

end

Type(X , Patient), SubClassOf (Patient, Person)⇒
Type(X , Person)

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

RDFS

RDF Schema - Axioms

r u l e "SubPropertyOf"
when

$p : P r o p e r t y ($s , $o)
SubPropertyOf ($p . c l a s s , $ s u p e r)

then
i n s e r t ($ s u p e r . n e w I n s t a n c e ($s , $o)) ;

end

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

RDFS

RDF(S) : Considerations

RDFS just makes implicit type declarations explicit

- Expressiveness is limited

- So is inference

+ Simple: Drools supports it easily

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

Outline

1 Introduction
Motivations
Modelling Knowledge

2 Integrated “Semantic Reasoning”
RDF
RDFS
Towards Description Logics

OWL-like Axioms
OWL-like Constructors

3 Embedding Semantics in Rules

4 Conclusions

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

Description Logics

Several logic(s) with different expressive power

Different features : F,E,U,C,S,H,R,O,I,N,Q, ...

Different languages to encode them

OWL, KIF, ...

OWL-DL will be considered for reference

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

Uses of DL - Objectives

Define (complex) concepts - aka classes

in terms of other classes and properties

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

Uses of DL - Objectives

Define (complex) concepts - aka classes
in terms of other classes and properties

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

Uses of DL - Queries

Subsumption

C ⊆ D?

Is D a more general concept than C?

Satisfiability

∃x : x ∈ C ?

Does C allow members?

Consistency

{...} ⊥?

Does a set of facts lead to contradiction?

Instantiation

{...} x ∈ C ?

Is x member of C given the available knowledge?

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

Description Logics

OWL defines axioms and class constructors:

Axioms

subClassOf

equivalentClass

subPropertyOf

equivalentProperty

disjointWith

sameAs

differentFrom

transitiveProperty

inversefunctionalProperty

symmetricProperty

inverseOf

Constructors

intersectionOf

unionOf

complementOf

oneOf

allValuesFrom

someValuesFrom

hasValue

minCardinality

maxCardinality

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

Drools Integration

Drools works with instances.

Instantiation is (almost) immediate

Subsumption can be reduced to Satisfiability

Satisfiability is still an open issue

Preliminary analysis:

Tableau algorithms seem the most likely candidates

generative

Still need some features (e.g. backtracking, false relations)

We’ll start from what can be done already

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

Drools Integration

Drools works with instances.

Instantiation is (almost) immediate

Subsumption can be reduced to Satisfiability

Satisfiability is still an open issue

Preliminary analysis:

Tableau algorithms seem the most likely candidates

generative

Still need some features (e.g. backtracking, false relations)

We’ll start from what can be done already

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

Drools Integration

Drools works with instances.

Instantiation is (almost) immediate

Subsumption can be reduced to Satisfiability

Satisfiability is still an open issue

Preliminary analysis:

Tableau algorithms seem the most likely candidates

generative

Still need some features (e.g. backtracking, false relations)

We’ll start from what can be done already

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

Drools Integration

Drools works with instances.

Instantiation is (almost) immediate

Subsumption can be reduced to Satisfiability

Satisfiability is still an open issue

Preliminary analysis:

Tableau algorithms seem the most likely candidates

generative

Still need some features (e.g. backtracking, false relations)

We’ll start from what can be done already

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

Outline

1 Introduction
Motivations
Modelling Knowledge

2 Integrated “Semantic Reasoning”
RDF
RDFS
Towards Description Logics

OWL-like Axioms
OWL-like Constructors

3 Embedding Semantics in Rules

4 Conclusions

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

Axioms: General Principles

Most axioms define features of Properties

Meta-data specified using attributes

Engine automatically inserts meta-facts

Rule Bases automatically include meta-rules

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

subClassOf

Same as in RDFS, but...

dec lare P a t i e n t
@role (e n t i t y)
@subclass (Person)
@subclass (. . .)
end

Attribute @subclass inserts
SubclassOf(Patient.class,Person.class)

Here hierarchy is declared, but not inferred

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

subClassOf

Same as in RDFS, but...

dec lare P a t i e n t
@role (e n t i t y)
@subclass (Person)
@subclass (. . .)
end

Attribute @subclass inserts
SubclassOf(Patient.class,Person.class)
Here hierarchy is declared, but not inferred

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

subPropertyOf

As for SubClassOf:

dec lare HasSon
@role (p r o p e r t y)
@subproperty (H a s Ch i l d)
end

Attribute @subproperty inserts
SubPropertyOf(HasSon.class,HasChild.class)
same as before - but DL do not entail subproperty relations!

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

Class/Property Equivalence

Two more Attributes:

@equivalentClass()

@equivalentProperty()

Syntactic sugar: C ≡ D ⇔ (C → D ∧ D → C)

... but also (C → D ∧ ¬C → ¬D)

remeber/see the imperfect case?

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

Class/Property Equivalence

Two more Attributes:

@equivalentClass()

@equivalentProperty()

Syntactic sugar: C ≡ D ⇔ (C → D ∧ D → C)

... but also (C → D ∧ ¬C → ¬D)

remeber/see the imperfect case?

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

Disjoint

dec lare Male
@role (e n t i t y)
@ d i s j o i n t W i t h (Female)
end

The attribute controls the insertion of an instance of the relation:

dec lare D i s j o i n t W i t h
@role (p r o p e r t y)
@symmetric
s u b j e c t : C l a s s
o b j e c t : C l a s s
end

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

Disjoint

r u l e "Disjoint" // not i n s t a n d a r d D r o o l s . . .
when

Type ($x , $ k l a s s)
D i s j o i n t W i t h ($ k l a s s , $ a n o t h e r K l a s s)

then
i n s e r t (new Type ($x , $ a n o t h e r K l a s s , FALSE)) ;

end

Type(X , Male)⇒ ¬Type(X , Female)

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

(In)Equalities

Two relations, to be specified on an individual basis

dec lare E q u a l s
@role (p r o p e r t y)
@symmetric
@t rans i t i ve

s u b j e c t : R es o u r c e
o b j e c t : R e s o u r c e

end

dec lare D i f f e r e n t F r o m
@role (p r o p e r t y)
@symmetric

s u b j e c t : R es o u r c e
o b j e c t : R e s o u r c e

end

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

Transitivity

The relation attribute @transitive allows to compute closures:

dec lare T r a n s i t i v e
@role (p r o p e r t y)

s u b j e c t : C l a s s <? e x t e n d s P rop er ty >
o b j e c t : b o o l e a n

end

ru l e "Closure"
when

P r o p e r t y V a l u e ($p , $x , $y)
P r o p e r t y V a l u e ($p , $y , $z)
T r a n s i t i v e ($p , t r u e)

then
i n s e r t ($p . n e w I n s t a n c e ($x , $z)) ;

end

Relative(X , Y), Relative(Y , Z)⇒ Relative(X , Z)

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

Symmetry

The relation attribute @symmetric inverts roles:

dec lare Symmetr ic
@role (p r o p e r t y)

s u b j e c t : C l a s s <? e x t e n d s P rop er ty >
o b j e c t : b o o l e a n

end

ru l e "Symmetry"
when

$prop : P r o p e r t y V a l u e ($p , $x , $y)
Symmetr ic ($p , t r u e)

then
i n s e r t ($p . n e w I n s t a n c e ($y , $x)) ;

end

Relative(X , Y)⇒ Relative(Y , X)

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

Functionality

Functionality (resp. inverse-functional) properties are decorated
using the attributes @functional and @invFunctional

r u l e "Functionality" // r e s p . i n v e r s e
when

P r o p e r t y V a l u e ($p , $x , $y)
// as p e r o b j e c t i d e n t i t y
P r o p e r t y V a l u e ($p , $x , $z != $y)
F u n c t i o n a l ($p , t r u e)

then
i n s e r t (new SameAs ($y , $z)) ;

end

HasFather(X , “john′′), HasFather(X , “mrWhite ′′)⇒
SameAs(“john′′, “mrWhite ′′)

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

Inverse

The relation attribute @inverse allows:

dec lare I n v e r s e
@role (p r o p e r t y)
@symmetric

s u b j e c t : C l a s s <? e x t e n d s P rop er ty >
o b j e c t : C l a s s <? e x t e n d s P rop er ty >

end

ru l e "Inverse"
when

P r o p e r t y V a l u e ($p , $x , $y)
I n v e r s e ($p , $q)

then
i n s e r t ($q . n e w I n s t a n c e ($y , $x)) ;

end

HasFather(X , Y)⇒ FatherOf (Y , X)

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

Outline

1 Introduction
Motivations
Modelling Knowledge

2 Integrated “Semantic Reasoning”
RDF
RDFS
Towards Description Logics

OWL-like Axioms
OWL-like Constructors

3 Embedding Semantics in Rules

4 Conclusions

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

Constructors : General Principles

Constructors become specialized rule-like patterns

dec lare K l a s s
@ r e s t r i c t i o n ($x) (// t a r g e t v a r i a b l e

// P a t t e r n s h e r e
$x : R e s o u r c e (. . .) // b i n d i n g
. . . // d e f i n i t i o n

)
end

Automatically inserts Type(x,Klass.class)

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

Intersection

C1 ∧ · · · ∧ Cn → K

r u l e "Intersect"
when

$x : R e s o u r c e ()
Type ($x , C1 . c l a s s)
. . .
Type ($x , Cn . c l a s s)

then
i n s e r t (new Type ($x , K. c l a s s)) ;

end

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

Union

C1 ∨ · · · ∨ Cn → K

r u l e "Union"
when

$x : R e s o u r c e ()
Type ($x , C1 . c l a s s)
. . .
or Type ($x , Cn . c l a s s)

then
i n s e r t (new Type ($x , K. c l a s s)) ;

end

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

Complement

C → ¬K

See @disjointWith

r u l e "Complement"
when

$x : R e s o u r c e ()
Type ($x , $c : C . c l a s s)

then
i n s e r t (new Type ($x , K. c l a s s , FALSE)) ;

end

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

OneOf

{e1, . . . , en} ⊆ K

r u l e "One of Many"
when // one r u l e f o r each i n d i v i d u a l

$x : R e s o u r c e (. . .) // e x
then

i n s e r t (new Type ($x , K. c l a s s)) ;
end

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

All Values from

∀(P(X , Y) ∧ C (Y))→ K (X)

r u l e "AllValues"
when

$x : R e s o u r c e ()
$k : C l a s s (. . .) // $k may be a ” l i t e r a l ”
f o r a l l (SomeProperty ($x , $y)

Type ($y , $k))
then

i n s e r t (new Type ($x ,K. c l a s s)) ;
end

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

Some Values from

∃(P(X , Y) ∧ C (Y))→ K (X)

r u l e "SomeValues"
when

$x : R e s o u r c e ()
$k : C l a s s (. . .) // $k may be a ” l i t e r a l ”
e x i s t s (SomeProperty ($x , $y)

Type ($y , $k))
then

i n s e r t (new Type ($x ,K. c l a s s)) ;
end

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

Cardinality of Values

(|P(X , Y)| Q n)→ K (X)

r u l e "Cardinality"
when

$x : R e s o u r c e ()
C o l l e c t i o n (s i z e == N) // a l s o > or <

from c o l l e c t (SomeProperty ($x , $y))
then

i n s e r t (new Type ($x ,K. c l a s s)) ;
end

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

On Constructors

So far, more like class constraints

Still useful in practice!

− Not quite like DL reasoners

Necessary (but not sufficient) : reverse constructors

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

Intersection (reverse)

C1 ∧ · · · ∧ Cn ← K

r u l e "IntersectRev"
when

$t : Type ($x ,K. c l a s s)
not (Type ($x , C1 . c l a s s)

Type ($x , C2 . c l a s s))
then

i n s e r t (new Type ($x , C1 . c l a s s)) ;
. . .
i n s e r t (new Type ($x , Cn . c l a s s)) ;

end

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

Union (reverse)

Non-deterministic : requires new features!

C1 ∨ · · · ∨ Cn ← K

r u l e "UnionRev"
when

$t : Type ($x ,K. c l a s s)
not (Type ($x , C1 . c l a s s))
not (Type ($x , C2 . c l a s s))

then
i n s e r t B a c k T r a c k (

new Type ($x , C1 . c l a s s) ,
new Type ($x , Cn . c l a s s)) ;

end

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

All Values from (reverse)

∀(P(X , Y) ∧ C (Y))← K (X)

r u l e "AllValues"
when

Type ($x ,K. c l a s s)
$p : SomeProperty ($x , $y)
not (Type ($y , C . c l a s s))

then
i n s e r t (new Type ($y , C . c l a s s)) ;

end

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

Some Values from (reverse)

∃(P(X , Y) ∧ C (Y))← K (X)

r u l e "SomeValues"
when

$t : Type ($x ,K. c l a s s)
not (SomeProperty ($x , $y)

Type ($y , C . c l a s s))
then

R e s o u rc e o = new Blank () ;
i n s e r t (new SomeProperty ($x , o)) ;
i n s e r t (new Type (o , C . c l a s s)) ;

end

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Towards Description Logics

Cardinality (reverse)

(|P(X , Y)| Q n)← K (X)

r u l e "Prop Cardinality = N"
// assuming s h o u l d be = N
when

$t : Type ($x ,K. c l a s s)
$c : C o l l e c t i o n ($s : s i z e < N)

from c o l l e c t (SomeProperty ($x , $y))
then

f o r (i n t j : 0 . . (N−$s)) {
R e s o u r ce y = new Blank () ;
i n s e r t (new SomeProperty ($x , y)) ;

}
end

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Conclusions (so far)

+ A subset of DL can be built on top of Drools natively

+ More features will be added

− Notation is still verbose

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Ideas...

“On the fly” class declaration + rule

r u l e "No Fever"
when

$p : P a t i e n t ()
f o r a l l (HasRecord ($p , $ r)

HasTemperature ($r , $t)
LessOrEqua l ($t , 3 7) // c e l s i u s

)
then

// . . .
end

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Ideas...

Goal:

r u l e "No Fever"
when

P a t i e n t (hasRecord [] . hasTemp a l l l e s s O r E q u a l 37)
then

// . . .
end

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Tighter Integration - Proposals

Property role /1

Properties as “virtual fields”

Properties can be navigated

“Fields” need not be declared at compile time

Patient(type Senior.class,
hasRecord[].hasTemp all lessOrEqual 37)

P(S , O)⇔ S .P 3 O

Query mode : ∃X : p(s, X)?

“Fields” are set-valued unless properties are functional

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Tighter Integration - Proposals

Property role /1

Properties as “virtual fields”

Properties can be navigated

“Fields” need not be declared at compile time

Patient(type Senior.class,
hasRecord[].hasTemp all lessOrEqual 37)

P(S , O)⇔ S .P 3 O

Query mode : ∃X : p(s, X)?

“Fields” are set-valued unless properties are functional

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Tighter Integration - Proposals

Property role /1

Properties as “virtual fields”

Properties can be navigated

“Fields” need not be declared at compile time

Patient(type Senior.class,
hasRecord[].hasTemp all lessOrEqual 37)

P(S , O)⇔ S .P 3 O

Query mode : ∃X : p(s, X)?

“Fields” are set-valued unless properties are functional

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Tighter Integration - Proposals

Property role /2

Properties as restrictions

Patient(type Senior.class,
hasRecord[].hasTemp all lessOrEqual 37)

Evaluation mode : p(s, o)?

iterates over all records

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Tighter Integration - Proposals

Quantifier role

Need quantifiers in constraints

Patient(type Senior.class,
hasRecord[].hasTemp all lessOrEqual 37)

Patterns:

getProperty all evalProperty object

getProperty only evalProperty object

implicit: maxCard=1, minCard=1

getProperty some evalProperty object

implicit: minCard=1

getProperty some @[max=””, min=””] evalProperty object

explicit maxCard and/or minCard

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Tighter Integration - Logic Structure

∀

∧

x ← hasRecord[1].hasTemp lessOrEqual

∩

<(x,37) LessOrEqual(x,37)

∧

. . .

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Tighter Integration - Logic Structure

In general:

Left and right operands are accessed (recursively)

Every possible pair is tested

Using a direct evaluator
Using asserted relations

Behaviour is conditioned by quantifier

Natural extension for uncertainty

Quantifier

∧

x ← Access(Property) Restriction

∩

f (x,y) Relation(x,y)

y ← Access(Property)

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

On Implementation

Two main points:

Dynamic fields

Node behaviour

And questions (just to cite some):

Field mapping

what if P(S , O) is in the WM, but S is not?

Should triples always be kept explicitly in WM ?

Introduction Integrated “Semantic Reasoning” Embedding Semantics in Rules Conclusions

Conclusions

Compact syntax is more Drools-like

Comparable expressiveness with explicit triples

Dynamic types and fields overcome the problem of static
declarations

Need improvements on language and engine

Implementation and Efficiency to be tested

Better architecture for uncertain reasoning...

	Introduction
	Motivations
	Modelling Knowledge

	Integrated ``Semantic Reasoning''
	RDF
	RDFS
	Towards Description Logics

	Embedding Semantics in Rules
	Conclusions

