
Dumping JSF
Stan Silvert
JBoss Core Developer

Overall Presentation Goal

Introduce the JSFSpy application and its WARlet
architecture.

Interactive PreDemo

Introducing JSFSpy
 Provides insight into your JSF application
 Tracks and traces HttpSessions and

HttpServletRequests
 Tracks Scoped Data in each phase with

complete history.
 Rudimentary performance data
 Requires JSF 2 and Servlet 3.0
 Extensible via WARlets

How to install JSFSpy
 Step 1: Download the JSFSpy jar.

How to install JSFSpy

Step 1: Download the JSFSpy jar.
Step 2: Put it in your WEB-INF/lib directory.

How to install JSFSpy

Step 1: Download the JSFSpy jar.
Step 2: Put it in your WEB-INF/lib directory.
Step 3: There is no Step 3

JSFSpy Demo!

JSFSpy Data Objects
 SpyManager singleton contains all Session

objects (not HttpSession, but more)
 Session contains RequestData objects (not

HttpRequest, but more)
 RequestData contains HttpRequest, Snapshot

objects (scoped data), and FacesMessages
 All leaves are Strings

SpyManager

Session Session

RequestData RequestData

HttpRequest Snapshots
(Scoped Data)

FacesMessagesAll Leaves are Strings

Creating Your Own Pages

lastLogin.xhtml:
<h:dataTable value="#{spymanager.sessions}" var=”session">
 <h:column>
 <h:outputText value="#{session.id}"/>
 </h:column>
 <h:column>
 <h:outputText value="#{session.userId}"/>
 <h:column>
 <h:outputText value="#{session.creationTime}”>
 <f:convertDateTime type="both"/>
 </h:outputText>
 </h:column>
</h:dataTable>

Using JSFSpy with JSFUnit
public void testMyCustomScopeCreated() throws IOException {
 JSFSession jsfSession = new JSFSession(“/foo.jsf”);
 JSFClientSession client = jsfSession.getJSFClientSession();
 // Do some requests with JSFClientSession
 SpyManager spyMgr = SpyManager.getInstance();
 Session session = spyMgr.getMySession();
 for (ScopeContext scope : session.getCustomScopes()) {
 boolean foundIt = false;
 if (scope.getScopeName().equals(“MyCustomScope”)) {
 foundIt = true;
 }
 }
 assertTrue(foundIt);
}

How to install JSFSpy
 Why is it so easy?

 How do the JSFSpy pages get into my WAR?

 Surely JSFSpy uses filters, servlets, etc. Don't
I need to declare something in web.xml?

“Thank you, Servlet 3.0”

 Servlet 3.0 says that I can put stuff in /META-
INF/resources/ and they will map to the context
root.

 All JSFSpy pages are in the JSFSpy jar under /
META-INF/resources/jsfspy

 I can hit this URL to get to JSFSpy:
http://localhost/myapp/jsfspy/index.jsf
(or whatever maps to FacesServlet: index.faces,
path mapping, etc)

“Thank you, Servlet 3.0”

 Servlet 3.0 also says that I can put a web-
fragment.xml in /META-INF. This works just
like adding stuff to the main web.xml

 Or I can use annotations like @WebServlet,
@WebFilter, and @WebListener.

 Must use web.xml 2.5 or 3.0 deployment
descriptor in WEB-INF/web.xml

 And don't set metatdata-complete=true

New Features for JSFSpy

 What would you like to see?

New Features for JSFSpy

 I don't plan to do very many.
 I'm too lazy.
 I'm too busy with other stuff.
 I need help.
 JSFSpy is open source, after all.
 I thought the community was supposed to do

the work.

Problems with getting community help
 “I'm too busy to help”
 Developers might like the project, but not the

way it is run. (Ant vs. Maven, coding
standards, in-fighting, etc.)

 Don't want to sign the contributor's agreement.
 It takes time to get up to speed on the project.
 Developers want to help only as long as they

get to work on their own “must-have” feature.
 Enthusiasm wanes quickly.

My Solution to Open Source
Participation: WARlets
 Something I just made up a few weeks ago
 A WARlet is a WAR add-on
 Installed as a single jar in WEB-INF/lib
 Requires Servlet 3.0
 WARlet container aggregates WARlets into a

single application
 WARlets allow anyone to create their own open

source WAR add-on

My Solution to Open Source
Participation: WARlets
 Maybe it will be a spec someday, but there is

LOTS of stuff to work out.
 Certainly fits to make JSFSpy extensible, but it

remains to be seen if the concept is generally
applicable.

 The big plus is that developers can create their
own open source project for JSFSpy plugins
via WARlets

WARlet Demo

Summary
 JSFSpy is a new debug/trace tool for

JSF2 and Servlet 3.0
 Collected data accessible from EL
 Collected data also accessible from

JSFUnit or other in-container code.
 WARlets allow anyone to extend JSFSpy

For more information
 stan @ jboss.com
 http://anonsvn.jboss.org/repos/jsfspy/trunk/

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

